WOODLAND PERIOD ARCHAEOLOGY
OF NORTHERN GEORGIA

W. DEAN WOOD AND WILLIAM R. BOWEN
WOODLAND PERIOD ARCHAEOLOGY OF NORTHERN GEORGIA

By

W. Dean Wood
Southern Research
Ellerslie, Georgia

and

William R. Bowen
Georgia Department of Transportation
Atlanta, Georgia

April 1995
TABLE OF CONTENTS

List of Figures ... iii
List of Tables ... iv
Acknowledgments ... v

I. Introduction ... 1
 Purpose and Goal ... 1

II. Environment ... 3
 Piedmont Province ... 3
 Blue Ridge Province .. 4
 Ridge and Valley Province ... 6
 Lookout Plateau .. 7

III. Culture History Overview ... 8
 Kellogg ... 8
 Material Culture ... 8
 Geographical Distribution .. 9
 Chronology ... 9
 Subsistence and Settlement 10
 Cartersville ... 11
 Material Culture .. 11
 Geographical Distribution 12
 Chronology ... 12
 Subsistence and Settlement 12
 Swift Creek ... 13
 Material Culture .. 14
 Geographic Distribution ... 14
 Chronology ... 15
 Subsistence and Settlement 15

IV. The Woodland Period Data Base 17
 Developing the Computer Data Base 17
 Limitations of the Data Base 22
 The Data Base .. 23
 Current Status ... 56

V. Research Recommendations ... 63
 Introduction .. 63
 Kellogg ... 64
 Cartersville ... 65
 Swift Creek .. 61
ACKNOWLEDGEMENT

This publication has been financed in part with Federal funds from the National Park Service, Department of the Interior, through the Historic Preservation Section of the Georgia Department of Natural Resources. However, the contents and opinions do not necessarily reflect the views or policies of the Department of the Interior or the Georgia Department of Natural Resources, nor does the mention of trade names, commercial products or consultants constitute endorsement or recommendation by the Department of the Interior of the Georgia Department of Natural Resources.

This program received Federal financial assistance for identification and protection of historic properties. Under Title VI of the Civil Rights Act of 1964 and Section 504 of the Rehabilitation Act of 1973, the U.S. Department of the Interior prohibits discrimination on the basis of race, color, national origin, or handicap in its federally assisted programs. If you believe you have been discriminated against in any program, activity, or facility as described above, or if you desire further information, please write to:

Office for Equal Opportunity
U.S. Department of the Interior
Washington, D.C. 20240
This study constitutes one of several operating plans assembled for developing a comprehensive protection process for cultural resources in Georgia. The purpose of this process, as set forth in Strategy for Cultural Resources Planning in Georgia is to "provide an effective mechanism for making decisions about the identification, evaluation, and protection of Georgia's finite set of cultural resources" (Crook 1986:5). This purpose is a guiding philosophy embodied in the Georgia Historic Preservation Plan, *A Vision for the Future*. This document provides "information about the historic properties and preservation programs in Georgia" and defines the "policy for the state historic preservation office in Georgia, the Historic Preservation Section of the Department of Natural Resources" (Department of Natural Resources 1989).

Study units or archaeological contexts provide the "foundation for the entire resources protection planning process" (Crook 1986:7). These units "provide the structure for organizing the mass of cultural resources data in the state and form the basis for synthesis and interpretation of that data base" (Crook 1986:7). Study units are defined on the basis of cultural units and environmental zones. In Georgia, 36 such units have been identified.

The present operating plan addresses those study units which include the prehistoric cultural phases of the Woodland Period (ca. 1000 B.C. - 900 A.D.) occurring in the physiographic provinces north of the Fall Line/Sand Hills. In essence, these are study units 15 - 18 identified by Crook (1986:18) and the Department of Natural Resources (1989:35), which include the Woodland/Piedmont, Woodland/Blue Ridge, Woodland/Ridge and Valley, and Woodland/Lookout Plateau.

PURPOSE AND GOALS

The primary aim or purpose of this study is incorporated into the planning process as a list of 15 questions (Crook 1986:21-22), which may be compartmentalized into four areas:

1) *quantification* of the extant resource base including the condition of the resource, the location, distribution, and density of the resource, and past studies concerning the resource;

2) *synopsis* of each study unit including cultural phases represented, environment matrices, and the adaptive strategies from an ecological perspective;
3) an outline of research strategies including data required and investigations needed to obtain these data, significant National Register qualifying characteristics, and the generation of predictive models; and,

4) a formation of management goals including preservation needs.

A secondary goal of this presentation, if somewhat optimistic, is the kindling of an academic awareness and curiosity among archaeologists which will lead to more in-depth considerations of this time period in Southeastern prehistory.

The Woodland Period of northern Georgia, despite being one of the most intensively represented prehistoric periods within the state's borders, has received very little academic attention. Certain Woodland cultures have been given periodic and supernova-like perusal, but nothing to compare with the continual focus placed on the period by different regions, such as the mid-west and other southern areas. In states such as Illinois, Kentucky, and Tennessee, the culturally dynamic and formative characteristics of the Woodland period are more fully appreciated. In Georgia, the Woodland is only occasionally the subject of graduate-level, degree achieving monographs, while topical publications usually restrict their treatment of the Woodland to synopses of previous research. The only synthesis of northern Georgia's Woodland Period was compiled and written by Patrick Garrow (1975) 20 years ago. Since then there have been major surveys and excavations completed, which have produced a wealth of information about this time period.

To achieve the aforementioned purpose, the data base for this period will be examined including site files, published and unpublished reports, and ongoing research. It will also be beneficial to examine the physiographic regions which comprise the northern half of Georgia and which form the ecological matrix within which the cultures of the Woodland period existed.
II. ENVIRONMENT

The use of political boundaries, such as state lines, to define areas of prehistoric study, usually do not provide the most appropriate research universe for these examinations. Political boundaries indiscriminately cross-cut ecological zones that tend to define the fabric upon which most prehistoric cultures melded with their environment. For this reason, within modern political boundaries, one must deal with either partial cultural phenomena or a melting pot of transitional zones. In Georgia, we are fortunate to have state borders which in many respects follow natural physical boundaries such as major rivers or physiographic divides. Such natural boundaries often served as cultural boundaries in the prehistoric southeast.

In Georgia, north of the fall line, four primary physiographic regions exist. Each is quite distinct from the other and each affects the cultural groups that chose to live in and exploit it. Although site distributions of the various Woodland groups are obviously tempered by our present data base, they are, without doubt, much influenced by environmental limitations and opportunities. With these points in mind, the four primary physiographic regions of northern Georgia will be outlined (Figure 1).

PIEDMONT PROVINCE

Fenneman (1938:121, 131) describes the Piedmont Province as an eroded upland plain in various stages of development and destruction with a typical landscape characterized by rolling surfaces and gentle slopes. Relief is generally moderate--15 or so meters--except where streams and other drainages bisect the terrain and form steep, narrow valleys. Near stream sources, valleys widen and are shallow with a gentle gradient. Rejuvenated streams produce the deeper valleys. In Georgia, the Piedmont Province covers an area approximately 60 - 92 kilometers north/south by 260 -266 kilometers east/west and is bounded by the Fall Line/Sand Hills to the south and the Ridge and Valley and Blue Ridge Province to the north.

LaForge (1925) includes the Piedmont Province of Georgia within his Central Upland Province, which also includes the Midland section. The Piedmont Section is subdivided into two major plateaus: The Dahlonega, which is the highest and occupies the northeastern portion of the province, and the Atlanta. The Atlanta Plateau occupies the central portion of the Piedmont Georgia and is characterized by broadly rolling uplands. This plateau is physiographically divided into two platforms which are distinguished by an elevation difference of about 78 meters. The lower of the two divisions is named the
Figure 1. Physiographic Provinces of Northern Georgia.
Fairburn Platform, which ranges roughly from 310 - 340 meters above mean sea level (AMSL).

The Atlanta Plateau is a rather homogeneous area with no major topographic differences among its various subdivisions. With the exception of a narrow strip along its southeastern margin which drains to the Atlantic Ocean, the plateau is drained by the Etowah and Chattahoochee Rivers of the Gulf Slope. While the Etowah flows on a more westward course, crossing the Piedmont/Ridge and Valley physiographic divide and joining the Oostanaula in Rome to form the Coosa, the Chattahoochee takes a more direct route to the Gulf of Mexico, flowing southwesterly until just north of the Fall Line where it turns south.

The Dahlonega Plateau (LaForge 1925:64-69) is characterized by a highly uneven surface ranging from 460 - 560 meters (AMSL). The headwaters of streams, such as the Soque, Chestatee, Chattahoochee, Etowah, and Coosawattee Rivers, have cut generally deep courses with steep slopes and narrow valleys southwesterly across this plateau. Within this irregular plateau are numerous monadnocks and mountains which rise to more than 775 meters (AMSL). LaForge (1925:61) characterized the Dahlonega Plateau as the "only true 'piedmont' country in Georgia."

One other subdivision of the Piedmont Section is the Tallapoosa Upland located south and west of the Atlanta Plateau. This rugged upland extends into Alabama and has an elevation ranging from 340 - 400 meters (AMSL). The topography in this area tends to be somewhat more sharply dissected than that of the Atlanta Plateau. This region is drained to the west by the Tallapoosa and Little Tallapoosa Rivers.

Midland Georgia is that portion on the Central Upland roughly ranging from a line connecting Newnan, Atlanta and Toccoa south and eastward toward the Fall Line. From west to east this province is divided into the Greenville Plateau (containing the Pine Mountain district, the Midland slope and the Washington Plateau). With the exception of the Greenville Plateau which drains into the Gulf via the Chattahoochee and Flint, the Midland drains into the Atlantic by way of the Ogeechee, Ocmulgee, Oconee, and Savannah. Elevations generally range 220 - 310 meters (AMSL) with the exception of the Washington Plateau, which averages approximately 60 meters less than this. Generally, as one moves from west to east and north to south within the Midland Georgia Section of the Piedmont Province the relief becomes more gentle and the river valleys widen with more fully developed floodplains.

BLUE RIDGE PROVINCE

The Blue Ridge Province is a 22 - 113 kilometers wide band of mountains which roughly runs northeast to southwest beginning in southern Pennsylvania and terminating
in northern Georgia (Fenneman 1938:163-194). Within Georgia, the Blue Ridge Province comprises about 3,000 square kilometers in the northeast corner of the state and is bounded on the south by the Piedmont and on the west by the Ridge and Valley. The physiographic divide for the province runs southwesterly from western North Carolina to north central Georgia, draining most streams (Toccoa, Nottely, Hiawassee, and Little Tennessee) northwesterly into the Tennessee River basin and others (Tugaloo, Chattooga, and Tallulah) southeasterly into the Savannah River. The Etowah and Chattahoochee, which head in the most southern portion of the province, flow westward and southwestward, respectively, while the Coosawattee and its tributaries (Ellijay and Cartecay) at the western edge of the province, flow westward into the Ridge and Valley.

The Blue Ridge rises from a plateau base which has a uniform elevation of 500 - 560 to 1,800 meters (AMSL). From this plateau, peaks and cross ranges rise to elevations of nearly 1,500 meters forming a pattern of mountains and intermountain plateaus. Relief is strong throughout the province and is typified by valleys cut to depths of 15 - 220 meters. Prominent floodplains can develop, however, where streams flow out of the highlands into plateau formations (Keith 1925:93-132).

RIDGE AND VALLEY PROVINCE

Fenneman (1938:195) defines the Ridge and Valley Province of North America as a strip 1930 kilometers long and from 2 - 22.5 kilometers wide, which runs from New England on the north to the Coastal Plain on the south. The Ridge and Valley Physiographic Province of northwestern Georgia is bounded by the Piedmont to the east and south. Distinctive features are broad, nearly level valleys underlain by limestone and shale divided by resistant sandstone and sandy shale ridges rising to the elevation of several 100 plus meters. The valley floor averages about 200 - 250 meters (AMSL). The limestone base soils are generally rich and well suited for agriculture. Numerous chert outcroppings are present in the region. Between Cartersville and Rome the primary geologic formation is the Knox dolomite which underlies about half of the region and yields, upon weathering, large quantities of a gray chert which is universally distributed over the landscape as boulders and smaller chunks. Exposures of the dolomite are rare, but several small exposures occur along the Etowah (Butts and Gildersleeve 1948:16-17). The other half of the valley is underlain by Cambrian limestones and schists (Fenneman 1938:274).

The Rome Valley, which forms the largest division of the Ridge and Valley Province ranges in width from 21 kilometers at the Tennessee state line to 40 kilometers at Cartersville. This valley constitutes the lowest elevation of the province and contains all the major streams. The Conasauga River, which flows south from Tennessee, joins the Coosawattee River, which flows westward from the northwest Piedmont, near Calhoun
to form the Oostanualoa. The Oostanaula joins with the westward flowing Etowah from the western Piedmont to form the coosa at Rome. From Rome the Coosa flow westward into Alabama where it joins the Tallapoosa River to form the Alabama River, which enters the Gulf of Mexico at Mobile Bay (Campbell 1925a:133-147).

The Armuchee Ridge section of the Ridge and Valley is located just north and west of the Rome Valley is underlain by the Fort Payne cherty limestone formation (Fenneman 1938:272). This is in sharp contrast to the geologic formations of the Piedmont which are wholly crystalline and deformed, yielding numerous metamorphic types such as quartz, phyllite, schist and slate and volcanic rocks and untramafics such as granite and soapstone.

LOOKOUT PLATEAU

This province is situated in the extreme northwestern corner of the state and is composed of two main flat-topped ridges or plateaus (Sand Mountain and Lookout Mountain) which rise to elevations of 530 - 620 meters (AMSL) and sharply drop to the Lookout and Chickamauga Valleys some 250 - 370 meters (AMSL) below (Hodler and Schretter 1986:16). Generally, drainage in the southern portion of the Province is to the southwest through streams which empty into the Little River in Alabama. Streams such as Lookout Creek and Nickajack Creek to the north, flow directly into the Tennessee River.
III.

CULTURE HISTORY OVERVIEW

Although the archaeological literature is cluttered with a sizable arsenal of terms for cultural manifestations occurring in what is referred to as the Woodland Period of northern Georgia, this study will focus upon only those phases which are well defined materially and chronologically, and wide-spread geographically. Cultural phenomena carrying names such as Mossy Oak, Watts Bar, Longbranch, Forsyth, Deptford, Thoms Creek, Hopewell, and post-Kellogg are significant to this study, not as independent cultural phases occurring within the study area, but by their geographical, cultural, and temporal relationships with the primary cultural phases: Kellogg, Cartersville and Swift Creek. The data available for these phases varies greatly as reflected below. To the extent possible, each phase will be discussed regarding its geographical distribution, chronological placement (relative and absolute), subsistence patterning, settlement patterning, and material culture. An appendix to this report provides 56 available radio carbon dates from 16 Northern Georgia Woodland sites. As is often the case for ceramic bearing cultures, the cultural name is derived from a pottery type whose name was derived from a significant archaeological site or geographical feature.

KELLOGG

The earliest identified pottery-bearing cultural manifestation post-dating the Archaic Period in northern Georgia is the Kellogg Phase. Fabric marked pottery and medium sized triangular projectile points are the most radical changes from the material cultural of the Late Archaic period. Cord marked and simple stamped sherds presumably belonging to the Early Woodland (i.e., Mossy Oak Cord Marked and Mossy Oak Simple Stamped) occur in Piedmont and Ridge and Valley Georgia, in restricted areas and abbreviated numbers; however, no well defined or dated cultural manifestation has been attributed to these wares. While a Mossy Oak Phase is generally recognized in northern Georgia, its distribution, cultural relations, and chronological placement are as yet unclear.

Material Culture. The most common and diagnostic artifact of the Kellogg Phase is Dunlap fabric marked or impressed pottery. The two most common types of vessels are large storage jars, reaching dimension of 45 cm high and 30 cm wide at the orifice, and large vertical-walled bowls. Other typical artifacts of the Kellogg assemblage include biconcave mortars, manos, solid and hollow boatstones, and chert and quartz small-to medium stemless points.
Geographical Distribution. Dunlap fabric marked pottery, the primary artifact for determining Kellogg components, has been found at sites from the Florida Gulf Coast northward through Georgia to the southern limits of the Appalachian Highlands. Dunlap pottery is also found from the Georgia/Alabama border on the west to western South Carolina on the east. With the exception of the area centering on the physiographic divide between the Ridge and Valley and Piedmont provinces, most occurrences of Dunlap pottery are representative of small percentages of a much larger collection and lack association with any identifiable pure Kellogg component as might be represented by midden or features. These occurrences most likely are representative of minor, temporary and transient occupations and trade (Anderson & Schuldenrein 1985; Fairbanks 1956:38, 55). We are, therefore, left with an approximate 72 km wide zone roughly spanning the area from Rome to Canton and extending from the watershed divide between the Etowah and Chattahoochee Rivers on the South (northern Cobb and Fulton Counties) and the northern limits of the Etowah watershed to the north (southern Gordon and Pickens Counties), that forms what appears to be the most intensive area of pure Kellogg occupation.

Chronology. Chronological placement for the Kellogg Phase has developed through the examination of numerous sites whose data have provided both relative and absolute dates. Relative data have accumulated through the examination of stratigraphic and contextual associations of Dunlap with diagnostic artifacts representative of other cultural/temporal phases. Absolute dates have been acquired through various radio-carbon determinations.

An analysis of 16 radio-carbon dates from six sites provides an overall time range for the Kellogg Phase. Including the sigmas, these dates have a range of 740 years from 20 B.C. to 760 B.C. with a mean date of 462 B.C. Seventy-five percent of the temporal span of the Kellogg Culture occurred between 300 B.C. and 600 B.C. and over ninety percent of the phase’s time span occupied the 500 year period between 150 B.C. and 650 B.C. (Bowen 1989).

A number of sites from the Coastal Plain, Ridge and Valley and Piedmont have provided contextual data, which suggest a relative temporal placement for the Kellogg Phase. Although tentative because of their small sample size, the data suggest the temporal precedence of the Late Archaic Stalling’s Phase over Kellogg and the later contemporanity of the two. Using the stratigraphic occurrence of diagnostic projectile point types at the Cagle Site (Ck123), Crook has suggested that Kellogg was built upon a Late Archaic base and that the distinctive Late Archaic Savannah River stemmed points continued to be manufactured at least into early Kellogg times (Crook 1984:53-55).

The available data for the Early Woodland do nothing to dispute the original chronological schemes worked out for this time period (Wauchope 1948 and Caldwell
10

Stratified deposits and other closed contexts provide data for the relative placement of Kellogg, Watts Bar (Tennessee), Long Branch (East Tennessee and Alabama), and Swannanoa (Northeast Tennessee and Western N. Carolina), all Early Woodland fabric marked pottery types of the southeastern United States. Based on these co-occurrences of pottery types and a number of carbon-14 determinations for each phase, the sequence would appear to be Swannanoa followed by Watts Bar, Kellogg, and Long Branch. A great deal of temporal overlap apparently occurs, however, among Watts Bar, Kellogg, and Long Branch (Bowen 1989).

Subsistence and Settlement. A model for Kellogg subsistence and settlement patterns has been determined from the distributions of Kellogg components, artifactual assemblages at each site, intra-site feature distributions, and evidence of exploited animal and vegetable resources recovered from these components. Kellogg sites are generally saturated with clusters of silo-, bell-, and basin-shaped storage pits, rock-lined/filled hearths, postholes, rock clusters, and burials. Certain features such as hearths and burials are site specific, that is, limited in distribution to certain types of occupation. While postholes most often appear randomly scattered, many form 3 - 5 meter wide arcs, which are associated with features. These may represent minor structures such as windbreaks or cabana shelters. Only one possible roofed enclosure has been noted in association with a Kellogg Phase component, but its identification is tenuous best (Bowen 1982).

Within feature and midden accumulations at the various Kellogg components, numerous floral and faunal remains representing a wide variety of plant and animal species, have been recovered. Among these remains are fall arboreal nuts, weed/seeds crops, mammals, fish, reptiles, birds, and mollusks. To date, there is no irrefutable evidence for the use of cultigens or domesticates in the Kellogg diet.

In summary, Kellogg people appear to have deployed their settlements to maximize environmental situations and support cultural integrity. Two types of sites emerge: a large, sedentary, year-round occupation and a small, seasonally occupied locus. The large sites, represented by such occupations as Kellogg (Ck102) and Garfield (Br57), appear to have been year-round habitations as reflected by seasonally specific subsistence remains, size and density of deposits (reflecting intensive, long term and repeated occupation), and heterogeneity of activities as evidenced by a variety of technologic- and sociologic-specific artifacts and burials. The smaller, seasonal occupations, such as Ck130 tend to be restricted in area, lack thick midden accumulations, and contain a more homogenous activity assemblage--technically rather than socially oriented--with a single activity function. Subsistence remains from these sites were representative of a specific time of year, i.e., late summer and fall.
The settlement pattern then would be one in which a large village or base is positioned to enhance the exploitation of a variety of upland and riverine resources during the course of an entire year. During the late spring, summer, and early fall months, exploitation could diversify among migratory as well as sedentary game, aquatic resources, weed/seed greens and seeds, and upland arboreal seed crops as well as terrestrial game species. This diversification of exploited resources would have allowed the occupation of the base by several social groups. During late fall, winter, and early spring, when migratory and riverine resources were no longer available, diet would consist of the stored fall seed crops.

In the late summer and early fall some social units, but not all, would disperse into the uplands to exploit and store the fall arboreal seed crop when it was available, abundant, and in season. Such a population dispersal would relieve any environmental stress attendant with over exploitation (especially of the fall seed crop) in the immediate vicinity of a single location. Population dispersal would also maximize the environment available for exploitation, and at least on a seasonal basis, expand the niche.

In mid-to-late spring, when migratory game species, riverine resources, and the weed/seed crops were once again available and, therefore, provided a resource base upon which a larger group could subsist. The dispersed groups would re-gather within the year-round residential base to exploit the various resources of the surrounding riverine and upland environments and conduct community-wide social functions.

CARTERSVILLE

Caldwell (1958:45) postulated a transitional phase occurring between the Kellogg and Cartersville Phases. In the Allatoona Reservoir area, he termed this period of mixed ceramic assemblages as "post-Kellogg", and the Lake Lanier area, 48 - 64 kilometers to the east, he termed Forsyth (Caldwell 1958:13). At Allatoona, the occurrence of Cartersville ceramics in Kellogg features is generally so minor that it can be attributed to incidental mixing from a superimposed occupation. However, checked stamped and fabric marked pottery were found in secure contexts from two households at the Cane Island site, 9Pm209 (Wood 1979). At Lake Lanier, the pure check stamped horizon, which Caldwell identified as Forsyth, is now generally relegated to an early development of the Cartersville Phase (Fairbanks 1954:10-11).

Material Culture. With the exception of pottery design, little change is noted between the artifactual assemblages of Cartersville and the preceding Kellogg Phase (Caldwell 1958:46). These include the medium stemless, concave base points, biconcave mortars with manos, slate and shale hoes, boatstones, bar gorgets, and pole celts. In addition to the simple and check stamped decoration, the vessels were generally large conoidal-based jars, often with tetrapodal supports, and small bowl forms (Caldwell 1957).
The earlier decorative type is check stamp with simple stamping being added somewhat later and growing in popularity (Fairbanks 1954:15-16).

Geographical Distributions. Like Kellogg, the center of Cartersville occupation (regionally speaking) focuses on the western Piedmont/eastern Ridge and Valley divide. The most intense clustering of Cartersville components occur within this area. Unlike the Kellogg, however, substantial Cartersville components are found farther afield. Farther to the east, intensive occupations have been found at Lake Lanier (Caldwell, et al. 1952 and Fairbanks 1954) and along the Savannah River/Russell Reservoir at the Georgia/South Carolina border (Anderson and Schudlenrein 1985; Wood et al. 1986). The phase reaches to the southwest, near Atlanta along the Chattahoochee River (Kelly 1973; Stuart and Stuart 1969:147), and to the northeast in the Lake Oconee area (Wood 1981). This expanse of site locations indicates a more widespread occupation than the previous Kellogg phase. Related types with similar design (Wright Check Stamped and Deptford) occur in neighboring regions.

Chronology. As noted, the Cartersville Phase can be divided into an earlier period characterized by the exclusive occurrence of check stamped ceramics and a later period distinguished by the addition of simple stamped wares. Cartersville also has been demonstrated to occur stratigraphically and immediately above Kellogg deposits (Wauchope 1948; Caldwell 1957). Radio-carbon dates for Cartersville are few and geographically dispersed. Dates from Tunacunnhee (Jefferies 1975, 1976), Cane Island (Wood 1981), Booger Bottom (Caldwell et al. 1952), and 9Fu14 (Kelly 1973; Stuart and Stuart 1969) suggest a time range beginning in the first century B.C. and continuing until the fifth or sixth century A.D.

Subsistence and Settlement. Caldwell (1958:46) notes a status quo in the location of specific occupational loci during the Cartersville Period. Sites are still rather small, compact and typically situated along narrow terraces close to streams.

Intra-site patterning is marked by the well documented occurrence of circular houses of individually set posts (e.g. Caldwell 1957, Kelly 1973; Jefferies 1975, 1976; and Wood 1981). During Cartersville, fire pits, hearths, and scattered postholes were abundant (Caldwell 1957), while large subterranean storage facilities are no longer as abundant as they were in the previous Kellogg phase.

The disappearance, or at least the reduction in storage facilities at Cartersville sites, may indicate a redirecting of subsistence strategies. While it is generally recognized that hunting and gathering still played a significant role in the economy, the introduction of domesticated plant species seems unmistakable. Corn now appears as a dietary item along with the continued use of semi-domesticates such as *polygonum*, *chenopodium*, and maygrass (Wood 1981; Wood and Ledbetter 1988).
During the Cartersville Phase, ceremonial activities first appear and are centered around elaborate mortuary practices associated with the Hopewellian Interaction Sphere of the mid-western United States and perhaps the Copena complex of northern Alabama (Jefferies 1975 and 1976). Burials of supposedly important personages took place in stone or earthen mounds and in caves (Waring 1945; Jefferies 1975 and 1976; Jefferies and Fish 1978; and Harris 1950). Such burials were often accompanied by exotic artifacts such as breast plates, ear spools, and gorgets, made of copper, pipes made of clay and copper, and celts made of ground stone and copper. Such ceremonialism is indicative of participation in a wide spread network of trading materials, objects and ideas. There is also the indication of some type of social stratification by recognition of certain persons within the society.

SWIFT CREEK

In northern Georgia, the most widely recognized archaeological phase of the Late Woodland period is Swift Creek. However, some Swift Creek sites do date to what many archaeologists would agree is the Middle Woodland period. The uniquely decorated Swift Creek pottery may span the boundary between the Middle and Late Woodland periods. In much of northern Georgia it is not until after A.D. 400 that Swift Creek complicated stamped pottery becomes common and Cartersville check stamped disappears. In most respects, there is a general continuum from Middle Woodland Cartersville through Late Woodland. Many key Swift Creek sites have reliable stratigraphy showing a gradual replacement of check and simple stamped pottery with complicated stamped pottery.

Recently, there have been suggestions that the Swift Creek phase may not be the only Late Woodland phase in northern Georgia. In the upper Savannah River Valley (the Russell Reservoir specifically), David Anderson (Anderson and Schuldenrein 1985) has postulated that Cartersville plain potteries (Cartersville II) continue to be used right up through the Late Woodland and into the Early Mississippian period. The Ruckers Bottom site (Eb91) and Rufus Bullard Site (Eb76) yielded both simple stamped and plain sherds in feature contexts that were dated as late as A.D. 800 and A.D. 1000 (Anderson and Joseph 1988).

West of the Savannah River in the area between the Ocmulgee and Oconee Rivers, Dan Elliott and Jack Wynn (1991) have studied simple stamped pottery sites and their temporal association. Although they have no radio-carbon dates as yet, they have found small triangular points with what they call Vining simple stamped pottery and suggest these types of sites belong to a Late Woodland or Early Mississippian culture. While there may be other phases of the Late Woodland period such as Vining or Cartersville II, we suggest caution until more of these simple stamped sites are excavated and dated. At present, the Swift Creek phase is the only reliable and widely recognized Late Woodland phase in northern Georgia.
Material culture. The most diagnostic feature of the Swift Creek phase is the uniquely decorated complicated stamped potteries called Swift Creek and Napier. These are paddle stamped wares that use combinations of geometric elements (ovals, teardrops, circles, diamonds, squares, and rectangles) to produce complex designs whose meanings we can only guess. Vessel forms include jars with conical bottoms and both incurvate and shouldered sides as well as bowls with flat bottoms and shouldered sides. Early Swift Creek rims tend to have flat or rounded lips and many are scalloped or notched at the lip. Later Swift Creek rims have pronounced folds of up to 1 cm wide at the lip of the vessel.

Late in the Swift Creek phase, a pottery type called Napier emerges, especially in the Middle Georgia Piedmont. Napier's decorative elements tend to be rectilinear designs consisting of diamonds and squares with chevron and ladder-like filler elements. In the late 1930s, Napier pottery was first recognized at the Napier site (Bi9) near Macon. Although it is generally thought to post date the more curvilinear Swift Creek type, its exact place in Late Woodland chronology is poorly understood. This results from too few sites excavated with pure Napier components.

Projectile points from the Late Woodland in northern Georgia are small stemmed, side notched, and made from chert or quartz. Specific types include the Baker Creek, Swan Lake, and Swift Creek spike. While grinding stones and hammerstones are often found on Swift Creek sites, the entire stone tool assemblage (chipped and ground) seems to be much less represented than in the earlier Woodland phases of Kellogg and Cartersville. This is the beginning of a trend that continued into the later Mississippian period when reliance on chipped stone tool assemblages is greatly reduced.

Geographic distribution. Sites belonging to the Swift Creek phase are found throughout northern Georgia; however, their numbers are substantially less than sites from the preceding Middle Woodland Cartersville phase. Swift Creek sites appear to cluster in relatively high numbers near Columbus and Macon at the Fall Line/Sand Hills where major rivers such as the Chattahoochee and Ocmulgee flow from the Piedmont into the Sand Hills.

In the eastern portion of the Piedmont, work in the Wallace and Russell Reservoirs have shown that Late Woodland sites are present but in limited numbers compared to earlier Woodland phases and later Mississippian phases. In the Allatoona Lake area of the western Piedmont and in the adjacent Ridge and Valley, Swift Creek sites are conspicuously absent. While Swift Creek complicated sherds are often found on Woodland sites, they are always greatly outnumbered by earlier Cartersville materials. In the Blue Ridge Province, Swift Creek pottery is present in the Nacoochee Valley, but never in overwhelming quantities. The Swift Creek midden exposed by the Coosawattee River at Carters lake (Mu104) may be one of the only pure Swift Creek sites in the Blue Ridge Province.
Chronology. Generally speaking, the Late Woodland begins at about A.D. 600 and lasts until about A.D. 900. Radio-carbon dates from key sites such as Anneewakee Creek (Do2) on the Chattahoochee River south of Atlanta and from Simpsons Field (38An8) on the Savannah River in the Russell Reservoir (just across the Georgia state line in South Carolina) date the Swift Creek phase from A.D. 600 - 750. There are other earlier dates from Swift Creek sites. One such site is the Little River site in Morgan County (Mg46) where Mark Williams and Gary Shapiro (1990:82) reported dates of 100 B.C. ± 110 and A.D. 110 ± 130 from Mounds C and B, respectively. If these accurately date the Swift Creek occupation at the Little River site, then it would be earlier than most Swift Creek sites in southern Georgia or northern Florida.

At Cold Springs (Ge10) along the Oconee River (Wallace Reservoir--Lake Oconee), dates of A.D. 400 and 455 were obtained from a cremation on the summit of Mound B and from the last stage of Mound A. Both are considered to be Swift Creek Mounds. More recently, a Swift Creek site (Mo487) at Georgia Power’s Plant Scherer was test excavated. Five radio-carbon dates spanning the period A.D. 341 - 655 were obtained from features such as postholes and pits. The average from these dates was A.D. 506, a bit earlier than is traditionally recognized as being Late Woodland (Rogers et al. 1991).

Subsistence and settlement. Information on these topics is scarce for the Late Woodland because so few sites have been excavated. Our best evidence comes from a site just across the Savannah River in South Carolina, Simpsons Field (38An8). Excavated as part of the Russell Reservoir project (Wood et al. 1986), this large Swift Creek village has given us a glimpse of Late Woodland village settlement and subsistence. Excavations yielded at least one household with a domestic structure, storage pits, earthen ovens, and burials. Although the structure’s precise outline could not be ascertained, dimensions of an 8 to 10 m oval was suggested by Anderson in the synthesis of the Russell Project (Anderson and Joseph 1988:233). Surrounding the structure were numerous large earth ovens and storage pits and two probable Late Woodland burials. Other such households probably existed on the crest of the terrace. Simpsons Field was probably a small village, although there was no evidence of a mound.

In Georgia, we have almost no information on Swift Creek settlements because most investigations have concentrated on mounds rather than villages. However, Teresa Rudolph’s (1986) analysis of Middle and Late Woodland settlements suggests that most Swift Creeks sites occur adjacent to large expanses of floodplains on major rivers. Upland areas and tributary stream locations are rarely inhabited. This pattern does not differ substantially from that observed for the Kellogg and Cartersville phases.

One area of northern Georgia that does stand out as different is the Ocmulgee River Valley of middle Georgia near Georgia Power’s Plant Scherer. In Monroe County, Swift Creek sites and Vining (simple stamped) sites are located almost exclusively on upland ridge and hill tops overlooking tributary streams (Smith and Wood 1989). At one site,
Mo487, test excavations revealed a Swift Creek site with at least two structures situated on a ridge top 2 km from the Ocmulgee River (Rogers et al. 1991). Jack Wynn and Dan Elliott’s work in the nearby Oconee Forest also have Vining sites located on ridge tops and hills that are far removed from the major streams of the region (Elliott and Wynn 1991).

Like the settlement data, the subsistence evidence from the Late Woodland phase is meager at best. Because few sites have been excavated, there is almost no plant or animal analysis. In general, a diffuse strategy of hunting, gathering and minor plant cultivation is suggested from the limited data available. The plant and animal species that were utilized in earlier Kellogg and Cartersville phases were still used in the Swift Creek phase. One significant addition to the diet comes from cultivated plants. Our best evidence of domesticated plant cultivation comes from the Simpsons Field site (38An8) across the Savannah River in the Russell Reservoir (Wood et al. 1986). Features at this site yielded pollen grains and charred fragments of *Curcubita* spp. (squash or gourd) and pollen from *Chenopodium/Amaranthus* and *Tubuliflorae* (sunflower). One grain of *Zea maize* (corn) pollen was recovered from feature context at Simpsons Field. The presence of a tropical cultigen at this site has been rejected by some (Anderson and Joseph 1988:237); however, the presence of corn should be expected by Late Woodland times. The earliest secure date for corn in Georgia comes from the Rush site, Fl164 (Wood and Ledbetter 1988) where a charred fragment of *Zea maize* was accelerator dated to A.D. 660 ±100. Maize has also been found on another Woodland site, Cane Island (Pm209). At Cane Island on the Oconee River, fossil pollen and charred cupule fragments were present in late Early Woodland context that dated to A.D. 245 ±95 (Wood 1979 and 1981). The available data suggests that while corn was probably present in the Late Woodland period, it never contributed significantly to the Indian diet until later Mississippian times.
IV.

THE WOODLAND PERIOD DATA BASE

The primary source used for this archaeological research design paper was the archaeological site files maintained by the University of Georgia's Department of Anthropology and Linguistics in Athens. During this study, there were about 15,000 sites recorded in Georgia with approximately 10,000 coded and entered into a computer data base. The computerized system was designed for the Paradox 3.0 (Borland International) program and IBM compatible personal computers. Another major source for Woodland Period archaeology was the manuscript and report files also housed at the Department of Anthropology and Linguistics. This collection includes volumes of archaeological manuscripts and reports that detail the results of research and compliance projects throughout the state. Lastly, informant interviews with colleagues from around the state provided as yet unpublished results of work in progress.

DEVELOPING THE COMPUTER DATA BASE

The data base used in this study was derived by copying the Paradox 3.0 files to a compatible Borland data base program called Reflex 2.0. Reflex was selected for this study because its data base and graphics capabilities allowed the easy sorting of the data base for certain attributes like site type (mound, village, rock shelter) and cultural period (Early, Middle or Late Woodland). Also, by using the UTM grid coordinates we produced maps showing the location(s) of any site or group of sites within the study units of northern Georgia.

After the site files were copied to the Reflex program, the file was sorted to remove all non-Woodland sites, leaving only those sites with Early, Middle, Late, or unspecified Woodland culture periods. The next step involved sorting the Woodland file only for those counties in northern Georgia. Of Georgia's 159 counties, 80 are located above the Fall Line. These 80 counties are arranged by physiographic province as follows:

- Ridge & Valley/Lookout Plateau 9 counties
- Blue Ridge 11 counties
- Western Piedmont 30 counties
- Eastern Piedmont 30 counties

Total 80
Table 1. Northern Georgia Counties listed by Physiographic Province.

| Ridge and Valley/Lookout Plateau | | |
|----------------------------------|----------------------------------|
| Dade (Dd) | Walker (Wa) |
| Whitfield (Wd) | Gordon (Go) |
| Floyd (Fl) | Bartow (Br) |
| Catoosa (Ct) | Chattooga (Cg) |
| Polk (Po) | |

| Blue Ridge | | |
|------------|----------------------------------|
| Fannin (Fn)| Union (Un) |
| Rabun (Ra) | Habersham (Hm) |
| Lumpkin (Lu)| Gilmer (Gi) | Dawson (Dw) |
| Murray (Mu) | Pickens (Pi) |

| Western Piedmont | | |
|------------------|----------------------------------|
| Haralson (Hr) | Coweta (Cw) |
| Carroll (Cl) | Douglas (Do) |
| Heard (He) | Paulding (Pa) |
| Troup (Tp) | Cobb (Co) |
| Harris (Hs) | Cherokee (Ck) |
| Muscogee (Me) | Forsyth (Fo) |
| Chattahoochee (Ce)| Fulton (Fu) | Henry (Hy) |
| Marion (Mr) | Forsyth (Fo) |
| Talbot (Ta) | Spaulding (Sp) |
| Meriwether (Mw) | Pike (Pk) |
| | |

| Eastern Piedmont | | |
|------------------|----------------------------------|
| Gwinnett (Gw) | Hall (Hl) |
| Rockdale (Ro) | Banks (Ba) |
| Newton (Ne) | Jackson (Jk) |
| Jasper (Ja) | Oconee (Oc) |
| Jones (Jo) | Hancock (Hk) |
| Baldwin (Bl) | Greene (Ge) |
| Putnam (Pm) | Clarke (Ca) |
| Morgan (Mg) | Stephens (St) |
| Walton (Wn) | Franklin (Fk) |
| Barrow (Bw) | Madison (Md) |
| | |
| | |
| | |
The counties designated for each physiographic province are shown in Table 1. The divisions between the Ridge and Valley, Blue Ridge and Piedmont provinces correspond closely to many of the county boundaries. The Ocmulgee River was used as the divide between the east and west sections of the Piedmont province. Three counties along the Fall Line, Muscogee, Chattahoochee, and Richmond, were included in the Piedmont, although two of the counties contain areas that are in the Fall Line/Sand Hills province. Valuable research has recently been carried out on two large military reservations (Fort Benning and Fort Gordon) in these areas. The inclusion of the data from these counties could provide an opportunity to see a transition from the Piedmont to the Coastal Plain provinces. Figure 2 shows northern Georgia counties with the physiographic subdivisions used in this study.

The end result of the different levels of sorting yielded a data base of 1,048 Woodland Period sites from 80 counties in northern Georgia. Table 2 summarizes the subfiles created from the data base:

<table>
<thead>
<tr>
<th>Province</th>
<th># Sites</th>
<th>EW</th>
<th>MW</th>
<th>LW</th>
<th>W</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridge and Valley/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lookout Plateau</td>
<td>198</td>
<td>67</td>
<td>100</td>
<td>25</td>
<td>39</td>
<td>231</td>
</tr>
<tr>
<td>Blue Ridge</td>
<td>86</td>
<td>22</td>
<td>42</td>
<td>41</td>
<td>19</td>
<td>124</td>
</tr>
<tr>
<td>Western Piedmont</td>
<td>486</td>
<td>152</td>
<td>269</td>
<td>103</td>
<td>95</td>
<td>61</td>
</tr>
<tr>
<td>Eastern Piedmont</td>
<td>278</td>
<td>64</td>
<td>121</td>
<td>44</td>
<td>78</td>
<td>307</td>
</tr>
<tr>
<td>Totals</td>
<td>1048</td>
<td>305</td>
<td>532</td>
<td>213</td>
<td>231</td>
<td>1281</td>
</tr>
</tbody>
</table>

EW = Early Woodland MW = Middle Woodland
MW = Late Woodland W = Unspecified Woodland

In the above table, the total number of components is larger than the total number of sites. Keep in mind that some sites have two or more Woodland components present.

Figure 3 illustrates the locations of Woodland sites in northern Georgia that were in the computer files as of 1 January 1991. Each symbol represents one site with either
Figure 2. Physiographic Subdivisions Used in This Study.
Figure 3. Distribution of Woodland Sites in Georgia Produced Using the Site Files Data Base from the University of Georgia.
Early Middle, Late, or unspecified Woodland components. Concentrations of sites occur where the major archaeological projects have been conducted in the state. Large scale surveys such as reservoirs and large tracts of federally-owned land (military reservations and National Forests) can be discerned on the map. In all likelihood, the areas with no sites simply have not been surveyed or the site data has not been entered into the computerized site file.

Listed below are some of the key attributes coded into the data base that proved useful for characterizing the Woodland Period occupation of northern Georgia:

- County designation
- Site number
- Site name
- UTM east
- UTM west
- USGS map
- Site type
- Kind of investigation
- Preservation state
- Preservation prospects
- Public status
- National Register status
- Culture period
- Phase name

LIMITATIONS OF THE DATA BASE

The most serious limitation in using the site files data base was that certain key counties were not entered yet into the file nor were many of the most recently discovered sites. For instance, Greene County has many sites recorded, but when this document was prepared none were coded into the data base. This presented a substantial gap in the data because these counties along the Oconee river are the location of the Wallace Reservoir (now Lake Oconee). Besides significant data recovery projects, the Wallace Reservoir stands out for its intensive full coverage survey that recorded thousands of archaeological sites in the clear-cut basin. Most of the Wallace Reservoir was in Green and Putnam Counties, although small portions were in Morgan and Hancock Counties as well. While great progress has been made at the State Site Files over the past decade, much remains to be done to bring past data on-line while continually updating the data base with newly discovered sites.

Another limitation in using the site files as a data base are errors. This problem was pointed out by Anderson, Ledbetter, and Osteen (1990:100) in their research design paper for the Paleoindian Period of Georgia. They noted that of 101 Paleoindian sites listed in the site files, approximately half had problems ranging from incorrect coding to misidentification of diagnostic artifacts. They advised caution when using the site files for research or management.
THE DATA BASE

There are 1,048 archaeological sites with Woodland components in northern Georgia recorded in the Site Files. This chapter reviews this database province by province illustrating the geographical relationships of all sites and describing certain key Woodland sites. Site data on these key sites are presented as they appear in the Site Files with no attempt to correct inaccuracies or update information. For the most part, information on the key site’s data is correct; information that needs updating is addressed in the narrative comments that follow many of the site data descriptions. The most common problem is that site form updates are not sent to the Site Files following testing or data recovery at a site. To remedy this, those sites with recent archaeological work are included and the results abstracted in the comment section of the data presentation that follows. Although many of the sites presented here have earlier and later occupations, only Woodland Periods are noted. Specific phase names are noted whenever this information occurred in the Site File’s data; unfortunately, this was very infrequent.

Ridge and Valley and Lookout Plateau Provinces. The Ridge and Valley province encompasses nine counties in northwestern Georgia. The Site Files database shows that this province has 198 recorded archaeological sites with Woodland components. Figure 4 shows those sites which have accurate locational information. The figure clearly shows that most of the known Woodland sites are located along the Etowah River from Cartersville to Rome and in the extreme northwest corner of the state along Lookout Creek and near Trenton. A near void of sites appears between these two concentrations in the Armuchee Ridges located between Lookout Mountain and the Great Valley. While this pattern is due partly to the location of archaeological surveys, it may represent a true division between the cultures of the Tennessee River Valley and those of the Coosa River Valley (Etowah/Coosawattee). The Armuchee Ridges area of the province is characterized by rugged terrain and a lack of large streams. Perhaps these factors hindered the growth of large populations and their attendant ceremonial centers.

The frequency of certain site types in the province is presented below:

- earthen mounds = 9
- possible earthen mound = 2
- rock mounds = 1
- village = 14
- artifact scatter = 2
- lithic scatter = 37
- cave = 3
- rock shelter = 7
- quarry = 1
- artifact cache = 10
- cemetery = 2
- isolated burial = 1
Figure 4. Woodland Sites in the Ridge and Valley and Lookout Plateau Province.
Br1 Etowah Mounds
Investigation: Excavation, 1953, UGA
Period(s): Early Woodland
Site Type(s): Village and Earthen Mound
Site Nature: Plowzone and subsurface
Preservation State: Cultivated and vandalized
Preservation Prospects: Safe at present
National Register Significance: National
Location of Documents: UGA
Location Of Collection: UGA

Comments: Although the Etowah site is known mostly for its spectacular Mississippian occupation, Woodland period material was recovered (Wauchope 1966) and the Site Files lists the presence of Early Woodland component. The extent of the Woodland occupation is unknown at the site, although a location across from the mouth of Pumpkinvine Creek would certainly have been advantageous.

Br2 Leake Mounds
Investigation: Survey, 1962, UGA
Period(s): Early Woodland and Late Woodland
Site Type(s): Village and mound
Site Nature: Surface known, subsurface unknown
Preservation State: Cultivated and eroded
Preservation Prospects: Endangered by cultivation
National Register Significance: National
Location of Documents: UGA
Location Of Collection: ?

Comments: Recent work at the Leake site near Cartersville has given us a mere glimpse of what might be the most significant Woodland mound site in the Ridge and Valley province. Jim Rudolph’s 1989 excavations in the mound discovered that although the top of the mound had been removed, enough remained to suggest a flat topped structure with buildings on top (Rudolph, personal communication, 1989) with dates of A.D. 140 ± 60, 290 ± 80, and 440 ± 60 uncalibrated from the last surviving layer of the mound (Rudolph 1990). Work at the Leake site village has been directed by David Hally and has concentrated on Late Mississippian domestic structures. However, limited excavations at the site by M. W. (Woody) Williams yielded a Woodland Period rock hearth dating to A.D. 90 ± 48 uncalibrated. Decorated pottery from the mound is primarily check stamped with simple stamped, fabric marked, and complicated types also present.

The Leake site may be the only flat topped Woodland mound left in the Ridge and Valley Province of the state. Unfortunately, it is located on the outskirts of Cartersville in an area that is experiencing rapid industrial growth. While many advances have been made by the Coosawattie Foundation, Inc. to assure its protection, continued diligence toward this goal certainly will be needed.
Br57 The Garfield Site
Investigation: Excavation, 1972, GSU
Period(s): Early Woodland
Site Type(s): Artifact scatter and village
Site Nature: Plowzone and subsurface
Preservation State: Cultivated
Preservation Prospects: Endangered by cultivation
National Register Significance: Location of Documents: GSU
Location Of Collection: GSU

Comments: This a densely occupied Early Woodland site on the Etowah River east of Rome. Amateurs first called attention to the site in the late 1960s and early 1970s. In 1972, Jerald Milanich working through the Smithsonian Institution, excavated here and found an abundance of artifacts, features and subsistence data (Milanich 1973). In his recent dissertation, Bowen (1989) has analyzed Milanich’s work and used it in an interpretation of the Kellogg culture. Looters have hit the Garfield site since Milanich’s work, however, we do not know the extent of the resulting damage.

Br139 The Stamp Creek Site
Investigation: Southeastern Archeological Services, Inc., 1986,
Period(s): Cartersville
Site Type(s): Village
Site Nature: Plowzone and subsurface
Preservation State: Unknown
Preservation Prospects: Unknown
National Register Significance: National Register Status: Recommended eligible
Location of Documents: Unknown
Location Of Collection: Unknown

Comments: The Stamp Creek site was originally excavated by Joseph R. Caldwell in the late 1940s prior to the flooding of Lake Allatoona (Caldwell 1957). Of the three areas at the site that yielded Mississippian remains, only Area A had Woodland material of any substance. Here, Caldwell’s deep testing found check stamped and fabric marked pottery sandwiched between earlier Late Archaic and later Mississippian materials. In 1986, a survey crew from Southeastern Archeological Services, Inc. relocated the site and found that it was above the normal floodpool of the lake and seldom inundated (Ledbetter et al. 1987). They reported area A was seriously threatened by the Mobile Corps of Engineers as shore line erosion from the Lake Allatoona was impacting the site. At this writing, the Corps has taken no action to stabilize the site.
Br141 The Boston Creek Site

Map: Allatoona Dam

Investigation: Unknown, 1986, Southeastern Archeological Services, Inc.

Period(s): Late Woodland

Phase(s): Kellogg, Cartersville, and Swift Creek

Site Type(s): Village

Site Nature: Plowzone and subsurface

Preservation State: Unknown

Midden: Unknown

Features: Unknown

Preservation Prospects: Unknown

National Register Significance: Unknown

National Register Status: Recommended eligible

Location of Documents: Unknown

Location Of Collection: Unknown

Comments: Caldwell's excavations here in 1949 (Caldwell 1957) yielded stratified deposits beginning with the Early Woodland Kellogg phase and included Cartersville, Swift Creek, and Woodstock phase materials to a depth of 1.2 m below surface. He also uncovered a portion of an Early Woodland household with postholes, rock hearths, and large storage pits. The Boston Creek site often is exposed during seasonal draw down of Lake Allatoona, since it lies only 0.2 to 1.0 m below normal pool. During these periods, artifact collectors and looters visit the site and gouge the exposed midden for arrowheads. This, plus shore line erosion currently threaten the site. Although the Corps of Engineers in Mobile were notified of this threat as early as 1985, no action has taken place yet.

Br199 Cora Harris Cave

Map: Exact location unknown

Investigation: Testing, 1951, UGA

Period(s): Middle Woodland

Site Type(s): Cave and burial

Site Nature: Surface known, subsurface unknown

Midden: Unknown

Features: Yes

Preservation State: Unknown

Preservation Prospects: Unknown

National Register Significance: Unknown

National Register Status: Recommended eligible

Location of Documents: UGA

Location Of Collection: UGA

Comments: This is a cave burial from the Middle Woodland period located northwest of Cartersville on the Great Smokey Fault. Harris (1950) reports a burial with copper breastplates, earspools and beads, as well as a ceramic vessel with four podal supports. The Site Files report the location of the cave as inaccurate.
<table>
<thead>
<tr>
<th>Site Code</th>
<th>Site Name</th>
<th>Map</th>
<th>Investigation</th>
<th>Period(s)</th>
<th>Site Type(s)</th>
<th>Site Nature</th>
<th>Preservation State</th>
<th>National Register Significance</th>
<th>Location of Documents</th>
<th>Location Of Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dd1</td>
<td>James Lee Rock Shelter</td>
<td>Hooker</td>
<td>Excavation, 1957, UGA</td>
<td>Middle Woodland</td>
<td>Rock shelter</td>
<td>Plowzone and subsurface</td>
<td>Unknown</td>
<td>Local</td>
<td>UGA</td>
<td>UGA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dd7</td>
<td>The Johnson Crook Site</td>
<td>Durham</td>
<td>Testing, 1975, UGA</td>
<td>Middle Woodland</td>
<td>Rock shelter</td>
<td>Plowzone and subsurface</td>
<td>Vandalized</td>
<td>Local</td>
<td>UGA</td>
<td>UGA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dd26</td>
<td>Tunacunnhee</td>
<td>UGA</td>
<td>Excavation, 1973, UGA</td>
<td>Middle Woodland</td>
<td>Village and rock mounds</td>
<td>Plowzone and subsurface</td>
<td>Cultivated</td>
<td>National</td>
<td>UGA</td>
<td>UGA</td>
</tr>
</tbody>
</table>

Comments: This site, a good example of a northwestern Georgia rock shelter, is located on the west side of Lookout Mountain at Johnson Crook, a large cove or valley. Jefferies' excavations here in 1975 yielded check stamped pottery. The shelter lies near a well-traveled road and looters have disturbed most of the deposits.

Comments: This was the last site that Joseph Caldwell directed prior to his death in 1983. Tunacunnhee is a village and multi-mound site in Lookout Valley near Trenton. Caldwell's excavations demonstrated that the mounds had earthen cores with rock mantels. High status burials beneath the mounds contained copper pan pipes and earspools, as well as celts, cut mica and other exotic items. Richard Jefferies (1976) reported on the site after Caldwell's death and later returned to Dade County to conduct a survey in the Lookout Valley. The vast number of sites shown on the site distribution map are a result of Jefferies' survey.
Rush Site

Investigation: Survey, 1985, GADOT
Period(s): Early Woodland
Site Type(s): Artifact scatter and lithic scatter
Site Nature: Plowzone and subsurface
Preservation State: Cultivated

Site Nature: Plowzone and subsurface
Preservation State: Cultivated

Site Nature: Plowzone and subsurface
Preservation State: Cultivated

Preservation State: Cultivated

Period(s): Phase(s): Kellogg

Phase(s): Kellogg

Site Type(s): Artifact scatter and lithic scatter
Site Nature: Plowzone and subsurface

Site Nature: Plowzone and subsurface

Midden: Unknown
Features: Unknown
Preservation Prospects: Endangered by GADOT

Preservation Prospects: Unknown

Preservation Prospects: Unknown

Preservation Prospects: Endangered by construction

Location of Documents: GADOT

Location of Documents: GADOT

Location of Documents: GADOT

Comments: Major excavations were conducted at the Rush site after it was discovered in the GADOT’s right-of-way for the East Rome Bypass. The proposed highway crossed only an edge of this multi-component Woodland site so the excavations were limited to the periphery of the site (Wood and Ledbetter 1988). The primary occupation dated to about 500 B.C. (uncalibrated) and represented the Kellogg phase. Later occupations include a Cartersville phase from which a fragment of maize was found and accelerator dated to A.D. 660 ± 100 uncalibrated. As far as we know, this is the earliest confirmed date for maize in Georgia.

Mahan Site

Investigation: Testing, 1953, Unknown
Period(s): Phase(s):

Period(s): Phase(s):

Midden: Yes
Features: Unknown
Preservation Prospects: Unknown
National Register Status: Unknown

Midden: Yes
Features: Yes
Preservation Prospects: Endangered by construction
National Register Status: Recommended eligible

Location of Documents: Unknown

Location of Documents: Unknown

Location of Documents: Unknown

Swancy Site

Investigation: Testing, 1987, Garrow & Associates
Period(s): Early Woodland
Site Type(s): Artifact scatter and lithic scatter
Site Nature: Plowzone and subsurface

Site Nature: Plowzone and subsurface

Site Nature: Plowzone and subsurface

Preservation State: Cultivated

Preservation State: Cultivated

Preservation State: Cultivated

Location of Documents: Garrow & Associates

Location of Documents: Garrow & Associates

Location of Documents: Garrow & Associates
Comments: This site was tested prior to the construction of a pipeline which crosses the Coosawattee River near Carters Lake. O'Steen (1987) excavated test pits in an area of Early Woodland occupation and demonstrated that the site had great potential for yielding important information on the region's prehistory. Consequently, the pipeline was rerouted to avoid impacting the site.

Go71 Long Site
Investigation: Excavation, 1987, Private (John Ware collection)
Period(s): Middle Woodland
Site Type(s): Lithic scatter
Site Nature: Plowzone and subsurface
Preservation State: Cultivated and eroded
Midden: Yes
Features: Yes
Preservation Prospects: Unknown
National Register Significance: Unknown
National Register Status: Recommended eligible
Location of Documents: Private collection
Location Of Collection: Private collection
Comments: This is one of over two dozen sites near Fairmount located by John Ware, a diligent collector and recorder of archaeological sites. The Fairmount cluster of sites lies astride the Great Smoky Fault that divides the Ridge and Valley from the Blue Ridge and Piedmont provinces. Little is known about these sites, although the dense concentration of settlement here suggest an as yet unrecognized Woodland population center.

Po27 Pumpkin Pile Site
Investigation: Testing, 1982, USFS
Period(s): Early and Middle Woodland
Site Type(s): Village
Site Nature: Surface known, subsurface unknown
Midden: Unknown
Features: Unknown
Preservation State: Unknown
Preservation Prospects: Endangered by Soil Conservation Service
National Register Significance: State
National Register Status: State
Location of Documents: USFS
Location Of Collection: USFS
Comments: The Pumpkin Pile Creek site has been extensively tested recently (Ledbetter 1992) and appears to be the best preserved example of a Woodland period village in the province and perhaps in northern
Georgia. Dense midden covers an area 200 m wide and 270 m long. Two areas were stripped, which had numerous pits and postholes from no less than two Woodland households. At least two occupations are inferred from preliminary ceramic analysis and clusters of radio-carbon dates of 520 - 380 B.C. and A.D. 115 - 150. The investigators suggest that there may be 2,000 features and 10 to 20 structures on the site as a whole. The final disposition of the watershed lake and the fate of this site remains unknown at the time of this writing.

The Blue Ridge Province. The 11 counties that comprise this province have only 86 recorded sites with Woodland components. This low density is because of two factors: topography and modern demographics. The province has vast mountain ranges with the most rugged terrain in the state. Much of the land is steep mountain side. The Blue Ridge Mountains of northern Georgia contain the headwaters of four major southeastern river systems (Tennessee, Coosa, Chattahoochee, and Savannah), although no major river flows through the province. These natural factors may have hindered the development of prehistoric population concentrations just as it has in contemporary Georgia society. Until recently, developmental projects requiring cultural resource surveys were few and far between in the province. Early TVA lakes in the area had no archaeological salvage programs and even today have had no shoreline or low water inventory surveys. The public lands of the Forest Service are surveyed and evaluated prior to any land disturbing actions, but they own the most rugged land of the province with few large stream bottoms.

The pattern one first sees in Figure 5 is a concentration of sites in the western portion of the province along the Chattahoochee River. This is the Nacoochee Valley where Robert Wauchope's depression era survey of northern Georgia spent a substantial amount of time testing Mississippian and Woodland Period sites. To the east of the Nacoochee Valley there appears to be a void surrounded by a thin fringe of Woodland sites. The large blank spot corresponds to the Blue Ridge Mountain Range where some of the most rugged land in the state is located. Another area of no sites is the Cohutta Mountain Range northwest of Gi43 (Weaver site.).

Site types and the frequencies in the Blue Ridge province include:

- earthen mounds = 4
- rock shelter = 1
- cemetery = 3
- rockmound = 1
- artifact scatter = 53
- quarry = 1
- isolated artifact = 1
- village = 10
- lithic scatter = 25
- cache = 1
Figure 5. Woodland sites in the Blue Ridge Province.
Gi43 The Weaver Site

Investigation: Testing, 1981, GADOT

Period(s): Early Woodland

Site Type(s): Village

Site Nature: Plowzone and subsurface

Preservation State: Unknown

National Register Significance: State

Location of Documents: GADOT

Location Of Collection: GADOT

Map: Ellijay

Phase(s):

Midden: Yes
Features: Yes

Preservation Prospects: Endangered by GADOT

National Register Status: Unknown

Comments: The Georgia DOT tested this site in 1981 as a part of the survey and evaluation of sites along the Appalachian Highway (Bowen 1981). In 1984, Crook conducted data recovery at the site (Crook 1985) prior to construction of the highway. Woodland period artifacts included mostly simple stamped pottery with minor amounts of check and complicated stamped types. Features were limited to rock clusters, pits, and unaligned postholes. Unexplored portions of the site lie north of the DOT right-of-way.

Mu104 Historic Cabin Site

Investigation: Excavation, 1979, UGA

Period(s): Middle Woodland

Site Type(s): Artifact Scatter

Site Nature: Plowzone and subsurface

Preservation State: Flooded

National Register Significance: Unknown

Location of Documents: UGA

Location Of Collection: UGA

Map: Oakman

Phase(s): Swift Creek

Midden: Yes
Features: Yes

Preservation Prospects: Endangered by Corps of Engineers

National Register Status: Recommended ineligible

Comments: This site at Carters Dam is known primarily for its Historic Cherokee occupation; however, a significant Swift Creek phase is present also. Construction activities in this portion of the reservoir unearthed a buried midden and all that could be salvaged was a large collection of sherds from disturbed contexts.
Wh2 The Eastwood Site
Investigation: Excavation, 1939, UGA
Period(s): Early Woodland
Site Type(s): Village and earthen mound
Site Nature: Plowzone and subsurface
Preservation State: Unknown
Preservation Prospects: Unknown
National Register Significance: Unknown
National Register Status: Unknown
Location of Documents: UGA
Location Of Collection: Unknown

Comments: This Nachoochee Valley Mound and Village site was excavated by Wauchope (1966) during his survey of northern Georgia. Woodland fabric marked, simple stamped, check stamped, and complicated stamped were wide-spread throughout the village with Swift Creek sherds most common. The mound was attributed to a Mississippian component at the site.

Wh28 The Stephenson Site
Investigation: Excavation, 1939, UGA
Period(s): Early and Middle Woodland
Site Type(s): Village and mound
Site Nature: Plowzone and subsurface
Preservation State: Unknown
Preservation Prospects: Unknown
National Register Significance: Unknown
National Register Status: Unknown
Location of Documents: Unknown
Location Of Collection: Unknown

Comments: This site was excavated by Wauchope (1966) when his northern Georgia survey visited the Nachoochee Valley. Beneath the earthen mound was a single burial accompanied by two copper covered wooden earspools. The village yielded fabric-marked, simple stamped, check stamped, and complicated stamped sherds attributable to Early, Middle, and Late Woodland times. Check stamped types predominated the collection.
Wh29 The Will White Site

Investigation: Excavation, 1939, UGA

Period(s): Early and Middle Woodland

Site Type(s): Village

Site Nature: Plowzone and subsurface

Preservation State: Unknown

National Register Significance: Unknown

Location of Documents: UGA

Location Of Collection: Unknown

Map: Cowrock

Phase(s):

Midden: No

Features: Yes

Preservation Prospects: Unknown

National Register Status: Unknown

Comments: The Will White site is located in the Nacoochee Valley. In 1939, Wauchope’s northern Georgia survey tested the site. Although the site was occupied during the Late Mississippian by people of the Lamar culture, there is evidence of earlier Woodland occupations. Wauchope (1966) reports fabric marked, simple stamped, check stamped, and complicated stamped sherds, apparently spanning an Early to Middle Woodland time.

Western Piedmont Province. This arbitrary division of the Georgia Piedmont has 30 counties and 486 recorded archaeological sites with Woodland Period components. The Western Piedmont has the largest number of Woodland sites in the database. This is due primarily to the completeness of the Site Files in this portion of the state rather than any aboriginal locational preference.

Figure 6 shows the locations of all Western Piedmont Woodland sites for which accurate locations exist. Several areas in this portion of the state stand out on the map as having distinctive clusters of sites. In all instances, these represent areas where large scale cultural resource surveys of Federally licensed projects or military reservations have taken place. These included Allatoona Lake, Lake Lanier and West Point Lake (owned by the U.S. Army Corps of Engineers), Georgia Power Company’s Plant Scherer Electric Generating Facility, Fort Benning Reservation, and the depression era work near Macon.

Site types found in the western Piedmont are presented below along with their frequency of occurrence:

- earthen mound = 15
- village = 36
- cave = 1
- artifact cache = 1
- isolate artifact = 1
- possible earthen mound = 10
- artifact scatter = 43
- rock shelter = 3
- cemetery = 4
- rockmound = 6
- lithic scatter = 73
- quarry = 2
- isolate burial = 1
Figure 6. Woodland Sites in the Western Piedmont Province.
Bi1 Macon Plateau Site
Map: Macon

Investigation: Excavation, 1934, National Park Service

Period(s): Early, Middle and Late Woodland

Phase(s): Swift Creek

Site Type(s): Village, earthen mound and cemetery

Site Nature: Plowzone and subsurface
Midden: Yes
Features: Yes

Preservation State: Cultivated and eroded
Preservation Prospects: Safe at present

National Register Significance: National
National Register Status: Determined Eligible

Location of Documents: National Park Service, SE Regional Center

Location Of Collection: National Park Service, SE Regional Center

Comments: The Macon Plateau site is recognized as one of the largest and most significant Early Mississippian Period sites in the United States. It should come as no surprise, however, that earlier people lived here too. Excavations on the Northern portion of the site in the stratified village deposits produced late Swift Creek and Napier sherds occurring with the Macon Plateau material (Kelly 1938; Kelly and Smith 1975). At the funeral mound, Fairbanks (1956) reported Early and Middle Woodland pottery. The Woodland pottery clearly predates the Mississippian material by at least two or three centuries.

Bi3 Swift Creek Site
Map: Macon

Investigation: Excavation, 1938, National Park Service

Period(s): Early, Middle and Late Woodland
Phase(s): Swift Creek and Napier

Site Type(s): Village and mound

Site Nature: Plowzone and subsurface
Midden: Yes
Features: Yes

Preservation State: Cultivated and eroded
Preservation Prospects: Endangered by GADOT

National Register Significance: State
National Register Status: Determined eligible

Location of Documents: National Park Service, SE Regional Center

Location Of Collection: National Park Service, SE Regional Center

Comments: This is the type site for Swift Creek culture in the Southeastern United States. It was excavated during the massive archaeological investigations in the Macon area during the depression era. A.R. Kelly was in overall charge of the project and was assisted by Charles Fairbanks, Jesse Jennings, and Gordon Willey, who where students at the time. The site consisted of an earthen mound of primarily Middle Woodland origin and a village with earlier and later Woodland material present. The most comprehensive analysis and discussion of the site was conducted by Betty Smith with help from A.R. Kelly (Kelly and Smith 1975). Although the Site Files indicate the site is endangered by the Georgia DOT, this is erroneous information. The site has been destroyed basically by the U.S. Army during construction of a World War II training facility and more recently from landscaping by the Georgia Peace Officers Association (Kelly and Smith 1975).
Bi4 Adkins Mound Site

Map: Macon

Investigation: Excavations, 1964, unknown

Period(s): Early, Middle and Late Woodland

Site Type(s): Mound

Site Nature: Plowzone and subsurface

Preservation State: Destroyed

National Register Significance: Unknown

Location of Documents: Unknown

Location Of Collection: Unknown

Phase(s): Swift Creek and Napier

Midden: Yes

Features: Yes

Preservation Prospects: Endangered by GADOT

National Register Status: Recommended ineligible

Comments: This was an erosion remnant or knoll located "a few hundred yards" from the Swift Creek Site (Kelly and Smith 1975:163). It was excavated in 1936 by A.R. Kelly's crew and found to be a shallow deposit on top of the knoll. Swift Creek pottery was present along with a small amount of Napier material.

Bi6 Shell Rock Cave Site

Map: Macon

Investigation: Unknown, 1937, National Park Service

Period(s): Early, Middle and Late Woodland

Site Type(s): Rock shelter

Site Nature: Plowzone

Preservation State: Unknown

National Register Significance: Unknown

Location of Documents: National Park Service, SE Regional Center

Location Of Collection: National Park Service, SE Regional Center

Phase(s): Napier

Midden: Unknown

Features: Absent

Preservation Prospects: Unknown

National Register Status: Recommended eligible

Comments: This was a rock shelter south of the Swift Creek site. Excavations by Kelly's crew in the late 1930s produced fiber-tempered, late Swift Creek and Bibb Plain types from the shelter's roof fall. It was the Napier sherds, however, that dominated the collection with a 75% representation (Kelly and Smith 1975).
Bi9 Napier Site
Investigation: Excavation, 1934, National Park Service
Period(s): Middle and Late Woodland
Site Type(s): Village
Site Nature: Plowzone and subsurface
Midden: yes
Features: Unknown
Preservation State: Unknown
Preservation Prospects: Unknown
National Register Significance: Unknown
National Register Status: Recommended eligible
Location of Documents: National Park Service, SE Regional Center
Location Of Collection: National Park Service, SE Regional Center

Comments: During Kelly's work around Macon, a heavy flood washed the banks of the Ocmulgee River
exposing a buried midden. This was the Napier site, where a distinctive rectilinear stamped pottery type was
first recognized. Napier complicated stamped pottery was observed to co-occur with, but mostly post date
the Swift Creek ceramics in the Macon area. Much of the site was destroyed by the flood and its disposition
today is unknown.

Bi11 Mossy Oak Site
Investigation: Excavation, 1937, National Park Service
Period(s): Middle Woodland
Site Type(s): Unknown
Site Nature: Plowzone and subsurface
Midden: Yes
Features: Unknown
Preservation State: Unknown
Preservation Prospects: Unknown
National Register Significance: Unknown
National Register Status: Recommended eligible
Location of Documents: National Park Service, SE Regional Center
Location Of Collection: National Park Service, SE Regional Center

Comments: Gordon Wiley directed excavations at the Mossy Oak Site by a WPA crew in the summer of
1937 (Walker 1994:23). It was here that Mossy Oak simple stamped pottery, an often cited but poorly
understood ceramic type, was first discovered (Fairbanks 1952:286). It has often been attributed to an Early
Woodland time period. The Mossy Oak occupation was reported by Fairbanks to be a pure zone separated
by sterile layers beneath a later Lamar occupation. However, analysis by Padgett (1980) suggests that the
separation between the two occupations is not as pronounced as Fairbanks reported. It is likely that the
simple stamped pottery from the Mossy Oak site would today be classified as Vining (Elliott and Wynn
1991:12) and date to the Late Woodland or Early Mississippian periods.
Ce4 Halloca Creek Site Map: Cussetta
Investigation: Testing, 1957, Columbus Museum
Period(s): Early and Middle Woodland
Site Type(s): Artifact Scatter
Site Nature: Subsurface
Preservation State: Undisturbed
National Register Significance: Unknown
Location of Documents: Columbus Museum
Location Of Collection: Columbus Museum

Comments: This is a Middle Woodland Period site with Swift Creek complicated stamped pottery located at the confluence of Halloca Creek and Oswichee Creek on the Fort Benning Military Reservation near Columbus. Test excavations by David Chase (Chase and Kelly 1958) demonstrated the site to be a densely occupied habitation area buried to some extent beneath the surface. Intensive survey in the Halloca Creek watershed in 1979 discovered many more Middle Woodland sites (Kohler 1979).

Ce42 Quartermaster Site Map: Fort Benning
Investigation: Survey, 1958, Columbus Museum
Period(s): Middle and Late Woodland
Site Type(s): Unknown
Site Nature: Subsurface only
Preservation State: Graded by machinery
National Register Significance: Unknown
Location of Documents: Columbus Museum
Location Of Collection: Columbus Museum

Comments: This site was accidentally discovered during construction of a pipeline on Main Post at Fort Benning. David Chase was able to salvage some artifacts and information from the profiles of the trench. The material was primarily Swift Creek complicated stamped pottery. Betty Broyles (1968) was able to demonstrate that one of the pots from the Quartermaster site had been manufactured at a Swift Creek site 85 miles away in southern Georgia.
Ck1 Long Swamp Site
Investigation: Excavations, n.d., University of Georgia
Period(s): Early, Middle and Late Woodland
Site Type(s): Village and mound
Site Nature: Plowzone and subsurface
Preservation State: Unknown
National Register Significance: Unknown
Location of Documents: UGA
Location Of Collection: Unknown
Map: Ball Ground
Phase(s):
Midden: Yes
Features: Yes
Preservation Prospects: Unknown
National Register Status: Unknown
Comments: Wauchope (1966) excavated this multi-component site along the Etowah River near Ball Ground. The mound was constructed during the Mississippian Period, however, the premound levels yielded late Woodland Napier or Swift Creek and early Mississippian Woodstock sherds. Check stamped, simple stamped, and fabric marked pottery types were also found on the site, but in less numbers.

Ck2 Woodstock Site
Investigation: Excavation, n.d., University of Georgia
Period(s): Early, Middle and Late Woodland
Site Type(s): Village
Site Nature: Plowzone and subsurface
Preservation State: Cultivated
National Register Significance: Unknown
Location of Documents: UGA
Location Of Collection: Unknown
Map: Mountain Park
Phase(s):
Midden: Yes
Features: Yes
Preservation Prospects: Unknown
National Register Status: Unknown
Comments: This is the type site for the Woodstock culture of northern Georgia. It was excavated by Joseph Caldwell in 1939 while he filled in for Robert Wauchope (Wauchope 1966). Exploratory trenches and test pits yielded Woodstock complicated stamped, plain, and incised pottery in large quantities. Also present, were earlier Woodland ceramics such as fabric marked. The Woodstock culture is considered by many to mark the termination of the Woodland Period and the beginning of the Mississippian Period.
Ck102 Kellogg Site
Map: Canton
Investigation: Testing, 1947, University of Georgia
Period(s): Early and Middle Woodland
Site Type(s): Shell midden
Site Nature: Plowzone and subsurface
Preservation State: Flooded
Preservation Prospects: Unknown
National Register Significance: Unknown
National Register Status: Unknown
Location of Documents: UGA
Location Of Collection: UGA

Comments: Joseph Caldwell excavated this Early Woodland site prior to the flooding of Allatoona Lake near Cartersville (Caldwell 1957). Contrary to the Site Files information, it was not a shell midden but rather a small village along the Etowah River at the mouth of Kellogg Creek. Evidence of a Woodland domestic structure along with nearly a hundred other features belonging to the Kellog and Cartersville phases were recorded. Recently, Bowen used the Kellogg collections in his dissertation to characterize the Kellogg phase of the region (Bowen 1989).

Ck123 Location #2 Site
Map: Ball Ground
Investigation: Testing, n.d., GADOT
Period(s): Early and Late Woodland
Site Type(s): Artifact Scatter
Site Nature: Plowzone and subsurface
Preservation State: Cultivated/graded by machinery
Preservation Prospects: Endangered by GADOT
National Register Significance: Local
National Register Status: Recommended eligible
Location of Documents: Unknown
Location Of Collection: GADOT

Comments: Ray Crook excavated this site (now called Cagle) prior to construction of I-575 by the Georgia DOT (Crook 1984). The Cagle site was located on the Etowah River near Canton. Crook’s excavations produced Kellogg phase pits, postholes, hearths, associated fabric marked Dunlap pottery, Savannah River Points, and medium sized triangular points. Undisturbed portions of the site still exist within the I-575/S.R. 5 interchange.
Ck130

Investigation: Excavations, 1982, GADOT

Period(s): Early and Middle Woodland

Site Type(s): Homestead

Site Nature: Plowzone and subsurface

Preservation State: Unknown

National Register Significance: Unknown

Location of Documents: GADOT

Location Of Collection: Unknown

Map: Kennesaw

Phase(s):

Midden: Unknown

Features: Unknown

Preservation Prospects: Unknown

National Register Status: Unknown

Comments: This is also known as DOT 7 from Bowen’s work at Noonday Creek near Canton (Bowen 1982, 1989). Prior to construction of I-575, the site was excavated by the Georgia DOT. Dunlap fabric marked pottery dominated the collection with fewer Cartersville check, simple stamped and Swift Creek complicated stamped sherds. Features included large pits, posthole alignments and rock hearths. Radiocarbon dates from DOT 7 are 565 ± 75 B.C., 470 ± 150 B.C. and 245 ± 120 B.C. for the Kellogg occupation and A.D. 700 ± 75 for the Swift Creek occupation.

Do2

Aneewakee Creek Site

Investigation: Excavation, n.d., GSU

Period(s): Early and Middle Woodland

Site Type(s): Village and mound

Site Nature: Plowzone and subsurface

Preservation State: Vandalized

National Register Significance: Unknown

Location of Documents: UGA

Location Of Collection: Unknown

Map: Ben Hill

Phase(s):

Midden: Unknown

Features: Yes

Preservation Prospects: Unknown

National Register Status: Unknown

Comments: Roy Dickens excavated this village and mound site (Dickens 1975) on the Chattahoochee River southwest of Atlanta. The mound had previously been tested by Wauchope during his northern Georgia survey (Wauchope 1966) and had suffered from cultivation and looting. Napier ceramics outnumbered the Swift Creek types. Radio-carbon dates from Annewakee Creek were A.D. 605 ± 85 and A.D. 755 ± 85, uncalibrated.
Fo16 Summerour Mound Site

Investigation: Survey, n.d., UGA
Period(s): Middle Woodland
Site Type(s): Village and mound
Site Nature: Plowzone and subsurface
Preservation State: Unknown
National Register Significance: Location of Documents: UGA
Location Of Collection: UGA

Map: Flowery Branch

Phase(s): Midden: Unknown
Features: Unknown
Preservation Prospects: Endangered by Corps of Engineers

Fu14 Great Southwest Site

Investigation: Excavation, n.d., GSU
Period(s): Early and Middle Woodland
Site Type(s): Artifact Scatter and village
Site Nature: Plowzone and subsurface
Preservation State: Unknown
National Register Significance: Location of Documents: Unknown
Location Of Collection: Unknown

Map: Ben Hill

Phase(s): Midden: Unknown
Features: Unknown
Preservation Prospects: Unknown

Comments: The Site Files is woefully incomplete with regard to this site. A.R. Kelly assisted by Larry Meir excavated what they interpreted as a large village dating to the Woodland Period (Kelly 1973). Work at this site was prompted by a planned industrial park which subsequently destroyed the site. Unfortunately, the results of the work were modestly reported and no site plan has ever been published.

Me8 Jordon Shelter Site

Investigation: Excavation, 1958, Columbus Museum
Period(s): Middle and Late Woodland
Site Type(s): Cave
Site Nature: Plowzone and subsurface
Preservation State: Unknown
National Register Significance: Location of Documents: Columbus Museum
Location Of Collection: Unknown

Map: Smiths

Phase(s): Midden: Yes
Features: Unknown
Preservation Prospects: Unknown

National Register Status: Unknown

Comments:
Me21 Carmouche Range Site Map: Buena Vista
Investigation: Testing, 1958, Columbus Museum Phase(s):
Period(s): Early Woodland Midden: Yes Features: Unknown
Site Type(s): Artifact scatter Preservation Prospects: Endangered by military
Site Nature: Subsurface only National Register Status: Unknown
Preservation State: Unknown Location of Documents: Columbus Museum
National Register Significance: Unknown Location Of Collection: Unknown

Preservation Prospects: Endangered by military National Register Status: Unknown
Location of Documents: Columbus Museum Location Of Collection: Unknown

Comments: This Sand Hills site at Fort Benning Military Reservation was first discovered by David Chase in 1958. In 1983 it was threatened by construction of a firing range. The subsequent data recovery excavations revealed a Sandy deposit up to 70 cm deep with Dunlap fabric marked, Cartersville check stamped and Swift Creek complicated stamped sherds sandwiched between Late Archaic and Early Mississippian components (Gresham et al. 1985).

Me21 Carmouche Range Site Map: Buena Vista
Investigation: Testing, 1958, Columbus Museum Phase(s):
Period(s): Early Woodland Midden: Yes Features: Unknown
Site Type(s): Artifact scatter Preservation Prospects: Endangered by military
Site Nature: Subsurface only National Register Status: Unknown
Preservation State: Unknown Location of Documents: Columbus Museum
National Register Significance: Unknown Location Of Collection: Unknown

Comments: This Sand Hills site at Fort Benning Military Reservation was first discovered by David Chase in 1958. In 1983 it was threatened by construction of a firing range. The subsequent data recovery excavations revealed a Sandy deposit up to 70 cm deep with Dunlap fabric marked, Cartersville check stamped and Swift Creek complicated stamped sherds sandwiched between Late Archaic and Early Mississippian components (Gresham et al. 1985).

Mo1 Towaliga Site Map: Berner
Investigation: Testing, 1940, Unknown Phase(s):
Period(s): Middle and Late Woodland Midden: Yes Features: Unknown
Site Type(s): Unconfirmed earthen mound and village Preservation Prospects: Unknown
Site Nature: Only surface known National Register Status: Unknown
Preservation State: Cultivated Location of Documents: Unknown
National Register Significance: Unknown Location Of Collection: Unknown

Comments: Although the Towaliga site on the Ocmulgee River is best known for its protohistoric Creek occupation, the site had a substantial Woodland occupation. Robert Wauchope's field director Mr. Sam Price worked at the site and recovered Early, Middle and Late Woodland ceramics from beneath a plowed down mound of uncertain affiliation (Wauchope 1966:410-412). Decorated Woodland ceramics from this permound zone included simple stamped, checked stamped, and complicated stamped (the latter represented by Swift Creek and Napier types). The excavations also found an unusual feature associated with the permound Woodland occupation. It was an 'alley like area" approximately 45m long and 1.7m wide with presumed logs on each side. One end was open and the other was closed off by a barrier of posts (Wauchope 1966:411).
Mo180 153 Site Map: East Juliette
Investigation: Survey, 1977, UGA Phase(s):
Period(s): Woodland Site Type(s):
Site Type(s): Rock mound Site Nature: Only surface known
Site Nature: Only surface known Midden: Unknown Features: Yes
Preservation State: Unknown Preservation Prospects:
National Register Significance: Unknown National Register Status: Unknown
Location of Documents: Unknown Location Of Collection: Unknown

Comments: This site is also known as the Plant Scherer Stone Mounds was excavated in 1977 by the University of Georgia (Jeffries and Fish 1978) prior to its destruction by Georgia Power Company’s Plant Scherer Electric Generating Facility near the Ocmulgee River. The site consisted of a large (2m high and 10m in diameter) stone mound atop a high piedmont knoll surrounded by numerous smaller stone mounds on the knoll’s slopes. The excavations produced projectile points, a ground stone artifact, a stone pipe and a ceramic vessel with podal supports. With the exception of the points the assemblage suggests a Middle Woodland date. Of greatest importance was the discovery of burned human bone beneath the mound indicating that the site served as a crematorium.

Mo216 Bibb Site Map: East Juliette
Investigation: Survey, 1983, Southeastern Archeological Services, Inc. Phase(s):
Period(s): Woodland Site Type(s):
Site Type(s): Rock mounds Site Nature: Only surface known
Site Nature: Only surface known Midden: Unknown Features: Yes
Preservation State: Unknown Preservation Prospects: Endangered by Georgia Power
National Register Significance: Unknown National Register Status: Unknown
Location of Documents: UGA Location Of Collection: UGA

Comments: This a site between Plant Scherer and the Ocmulgee River that exhibits a wide range of stone constructions including large and small mounds, terraces, pavements, and a chimney. Although the site has had no extensive excavations, it was mapped in 1983 (Wood 1983). It is included in this report on Woodland Period archaeology because of its similarity and close proximity to the Plant Scherer mound which is clearly Woodland in age.
Mo389
Map:Bolingbroke

Investigation: Survey and Testing, 1988, Southeastern Archeological Services; Inc.

Period(s): Woodland

Site Type(s): Artifact Scatter

Site Nature: Surface and Subsurface

Preservation State: Unknown

Preservation Prospects: Endangered by Oglethrope Power

Site Phase(s): Vinnings

Site Midden: No

Features: Yes

National Register Significance: Recommended Eligible National Register Status: Unknown

Location of Documents: Unknown

Location Of Collection: Unknown

Comments: This site, located on an eroded ridgetop, was tested and found to have features preserved beneath the plow zone (Smith and Wood 1989:55-59). Sixteen pits and postholes were found in a block excavation and seven features contained simple stamped, and undiagnostic pottery. Three radiocarbon determinations were obtained from features on the site that contained simple stamped pottery. The uncorrected dates were A.D. 5 ± 55, A.D. 280 ± 110, and A.D. 930 ± 60.

Mo487
Map:East Juliette

Investigation: Survey and Testing, 1988, Southeastern Archeological Services, Inc.

Period(s): Woodland

Site Type(s): Artifact Scatter

Site Nature: Surface and Subsurface

Preservation State: Unknown

Preservation Prospects: Endangered by Georgia Power

Site Phase(s): Swift Creek

Site Midden: No

Features: Yes

National Register Significance: Recommended Eligible National Register Status: Unknown

Location of Documents: Georgia Power

Location Of Collection: Georgia Power

Comments: This is an upland ridgetop site on Georgia Power Company’s Plant Scherer land. It was tested in 1990 by Southeastern Archeological Services, Inc. (Rogers et al. 1991:45-54). Sixteen cultural features (pits, postholes and a rock cluster) were excavated, half of which contained Swift Creek Complicated stamped pottery. Five radio carbon determinations were run on features and yielded the following uncorrected dates: A.D 341 ± 48, A.D. 435 ± 87, A.D. 546 ± 90, A.D. 556 ± 94 and modern.
Eastern Piedmont Province. This division of the Piedmont contains 30 counties east of the Ocmulgee River. Although some of the state’s largest archaeological projects have been conducted there, the eastern Piedmont has only 278 Woodland sites recorded in the computerized Site Files. The primary reason for this low number is that Greene and Putnam Counties had not been organized and entered into the Site Files computer databank when this document was prepared. These two counties contain the majority of the sites located along the Oconee River in the Wallace Reservoir Project (now Lake Oconee). During this project over 2000 archaeological sites were located, the majority of which are still to be entered into the computer files. Compounding this, is the fact that both counties contain portions of the Oconee National Forest which has had extensive survey coverage recently. If the sites in these counties were included, this province would probably contain more Woodland sites than any other. Rather than ignore the sites in the Wallace Reservoir and Oconee National Forest, we have included key examples below that are critical for understanding the Woodland period in the eastern Piedmont.

Figure 7 shows the locations of all the Woodland sites in the computerized data base for the eastern Piedmont. Although we have no site locations pin-pointed for Greene and Putnam Counties, this area is labeled as Wallace Reservoir. To the east, along the Savannah River, the Woodland sites of the Russell Reservoir appear as a distinct concentration. The northern edge of this province has a concentration of sites from Joseph Caldwell’s Buford Reservoir (now Lake Lanier) survey.

Sites types and their frequency in the eastern Piedmont are presented below

- earthen mound = 8
- rock mound = 6
- village = 14
- artifact scatter = 226
- lithic scatter = 75
- artifact cache = 1
- open habitation = 1

Ws51 Anthony Shoals
Period(s): Early Middle and Late Woodland
Phase(s): Kellogg, Cartersville and Swift Creek
Site Type(s): Village
Site Nature: Subsurface
Preservation State: Looted
National Register Significance: State
Midden: Yes
Preservation Prospects: Endangered by looting
Features: Yes
National Register Status: Eligible
Location of Documents: Unknown
Location Of Collection: Unknown
Map: Broad River
Figure 7. Woodland Sites in the Eastern Piedmont Province.
Comments: This is a stratified multi-component site on the Broad River just up stream from Strom Thurmond Lake (Wood and Smith 1988). Testing in 1987 discovered a dense Kellogg phase midden stretching for at least 300 m along the crest of the levee ridge. The midden contained primarily Dunlap Fabric Marked pottery and Yadkin points. Cartersville, Swift Creek, and Napier sherds were found in lesser quantities. This site is threatened by looters who have already destroyed 16% of the site. Public use has also seriously disturbed another 13% of the site.

Ge10 Cold Springs Site
Investigation: Excavation, 1978, University of Georgia
Period(s): Early, Middle and Late Woodland
Phase(s): Dunlap, Cartersville, Swift Creek, and Napier
Site Type(s): Village and mounds
Site Nature: Plowzone and Subsurface
Preservation State: Lake flooded and cultivated
National Register Significance: Local
Location of Documents: University of Georgia
Location Of Collection: University of Georgia

Comments: The Cold Springs Mounds and Village received extensive excavation as a part of the Wallace Reservoir Project along the Oconee River. Although much of the village dates to the Early Mississippian Period, a substantial Swift Creek occupation was found. At Cold Springs, a flat-topped mound with evidence of multiple structures was dated to A.D. 455 while a low circular mound with a cremation feature on its summit dated to A.D. 400 (Fish and Jefferies 1983). This site was the major Middle and possibly Late Woodland center for the Oconee River Valley of middle Georgia.

Pm201
Investigation: Excavation, 1977, University of Georgia
Period(s): Late Woodland
Site Type(s): Village
Site Nature: Plowzone and subsurface
Preservation State: Flooded by Lake; cultivated
National Register Significance: Unknown
Location of Documents: University of Georgia
Location Of Collection: University of Georgia

Map: Harmony Church
Phase(s): Napier
Midden: Yes Features: Yes
Preservation Prospects: Unknown
National Register Status: Unknown
Comments: This is one of the few Late Woodland sites in northern Georgia to produce a ceramic assemblage that could be considered "pure" Napier. Excavations here were part of the Wallace Reservoir's efforts along the Oconee River (Rogers 1978). A rich midden with pottery, lithics and features was discovered about a meter below the surface of a sandy levee ridge. No radio-carbon dates have ever been obtained from the site, although charcoal samples were collected and curated.

<table>
<thead>
<tr>
<th>Pm209</th>
<th>Cane Island site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map: Liberty</td>
<td></td>
</tr>
<tr>
<td>Investigation: Excavation, 1977, University of Georgia</td>
<td></td>
</tr>
<tr>
<td>Period(s): Early and Middle Woodland</td>
<td></td>
</tr>
<tr>
<td>Site Type(s): Village</td>
<td></td>
</tr>
<tr>
<td>Site Nature: Subsurface</td>
<td></td>
</tr>
<tr>
<td>Preservation State: Flooded</td>
<td></td>
</tr>
<tr>
<td>Preservation Prospects: Endangered by Georgia Power</td>
<td></td>
</tr>
<tr>
<td>National Register Significance: Unknown</td>
<td></td>
</tr>
<tr>
<td>National Register Status: Unknown</td>
<td></td>
</tr>
<tr>
<td>Location of Documents: University of Georgia</td>
<td></td>
</tr>
<tr>
<td>Location Of Collection: University of Georgia</td>
<td></td>
</tr>
</tbody>
</table>

Comments: This was one of the Woodland period sites chosen for excavation within the Wallace Reservoir Project (now Lake Oconee). The Woodland components on the site were extensive and two block units were opened (Wood 1979 and 1981). Each area had evidence of domestic structures with rock hearths associated with Dunlap Fabric Marked and Cartersville check stamped pottery in association with Yadkin points. One of the areas also had large storage pits and dense lithic reduction workshops adjacent to a structure. Radio-carbon dates placed one structure at A.D. 80, A.D. 115, while the other dated to A.D. 245. Cane Island also produced evidence early domesticates of *Zea maise* (pollen and charred cupules) and *cucurbita.*

<table>
<thead>
<tr>
<th>Eb17</th>
<th>Transect 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map: Hartwell Dam</td>
<td></td>
</tr>
<tr>
<td>Investigation: Excavation, 1981, Southeastern Wildlife Services, Inc.</td>
<td></td>
</tr>
<tr>
<td>Period(s): Early, Middle and Late Woodland</td>
<td></td>
</tr>
<tr>
<td>Phase(s): Kellogg, Cartersville and Swift Creek</td>
<td></td>
</tr>
<tr>
<td>Site Type(s): Village</td>
<td></td>
</tr>
<tr>
<td>Site Nature: Plowzone and subsurface</td>
<td></td>
</tr>
<tr>
<td>Preservation State: Flooded</td>
<td></td>
</tr>
<tr>
<td>Preservation Prospects: Endangered by Corps of Engineers</td>
<td></td>
</tr>
<tr>
<td>National Register Significance: Unknown</td>
<td></td>
</tr>
<tr>
<td>National Register Status: Unknown</td>
<td></td>
</tr>
<tr>
<td>Location of Documents: Moundville Alabama</td>
<td></td>
</tr>
<tr>
<td>Location Of Collection: Moundville Alabama</td>
<td></td>
</tr>
</tbody>
</table>
Comments: Two areas of this site along the Savannah River had Woodland period occupations. Excavation at one location yielded fabric marked, check stamped, simple stamped, and plain sherds with extensive lithic workshops that produced Yadkin points. Another area had Swift Creek and Woodstock-like sherds. Feature preservation was poor and radio-carbon dates at each location were presumably contaminated with modern charcoal (Wood et al. 1986).

Eb21 Paris Island South Site

Map: Heardmont

Investigation: Excavation, 1981, Southeastern Wildlife Services, Inc.

Period(s): Middle Woodland

Site Type(s): Artifact scatter

Site Nature: Subsurface

Preservation State: Flooded

Preservation Prospects: Endangered by Corps of Engineers

National Register Significance: Unknown

National Register Status: Unknown

Location of Documents: Moundville Alabama

Location Of Collection: Moundville Alabama

Comments: This is one of the Richard Russell Reservoir sites that yielded a Middle Woodland component. It is located on a large island in the Savannah River. A small midden was excavated which produced simple stamped Cartersville pottery and a lithic workshop (Wood et al. 1986). Quartz and metavolcanic raw materials were used to produce Yadkin projectile points.

Eb76 Rufus Bullard Site

Map: Heardmont

Investigation: Excavation, 1980-91, Commonwealth Associates

Period(s): Middle and Late Woodland

Site Type(s): Artifact Scatter

Site Nature: Unknown

Preservation State: Flooded

Preservation Prospects: Endangered by Corps of Engineers

National Register Significance: Unknown

National Register Status: Unknown

Location of Documents: Moundville, Alabama

Location Of Collection: Moundville, Alabama

Comments: This site was first tested by Lawrence Johnson Associates and then mitigated by Commonwealth Associates (Anderson and Schuldenrein 1985) as part of the Richard Russell Reservoir Project. The Site File's record on this site is misleading as features and midden were recorded by both investigations, but are not shown in the record. Postholes and rock hearths were found suggesting a domestic structure. Radiocarbon dates of A.D. 950 and A.D. 1090 point to a Late Woodland or Early Mississippian age; however, the pottery was exclusively plain and simple stamped. David Anderson has used the Rufus Bullard site as evidence for a Late Woodland, Cartersville II phase in the Upper Savannah River Valley (Anderson and Joseph 1988:245).
Eb91 Ruckers Bottom
Map: Heardmont

Period(s): Early, Middle and Late Woodland
Phase(s): Kellogg, Cartersville and Swift Creek
Site Type(s): Village
Site Nature: Plowzone and subsurface Midden: Yes Features: Yes
Preservation State: Flooded
Preservation Prospects: Endangered by Corps of Engineers
National Register Significance: Unknown
National Register Status: Unknown
Location of Documents: Moundville Alabama
Location Of Collection: Moundville Alabama

Comments: Of all the sites excavated in the Richard Russell Reservoir, Ruckers Bottom received the most intensive work. Known primarily for its Mississippian occupations, this site also yielded significant Woodland remains (Anderson and Schudlenriemen 1985). Postholes, rock hearths and probable storage pits were discovered at the site, suggesting at least one and probably more domestic structures were present during the Middle and perhaps Late Woodland periods. Cartersville plain, check and simple stamped pottery (found in feature and plowzone context) and radio-carbon dates suggest these ceramic types were in use from Middle to Late Woodland times (Anderson and Joseph 1988:241 and 246).

Ri4 Whites Mound Site
Map: Mechanic Hill

Investigation: Testing, 1963, University of Georgia
Period(s): Middle Woodland
Phase(s): Midden: Yes Features: Yes
Site Type(s): Artifact Scatter and Earthen Mound
Site Nature: Plowzone and subsurface
Preservation State: Unknown
Preservation Prospects: Unknown
National Register Significance: Unknown
National Register Status: Unknown
Location of Documents: University of Georgia
Location Of Collection: Tulane University

Comments: Whites mound is located southeast of Augusta on an erosional remnant in the floodplain of the Savannah River. Excavations by David Phelps and Rebekah Burgess (1964) yielded Middle Woodland pottery (Deptford) stratigraphically above Stallings Island material. The authors report a possible case of cannibalism based on a redeposited collection of human remains which had been burned, cooked and in some cases cut. A possible alternative explanation that is more likely is that the deposit represents a cremation for which there is ample evidence during the Middle Woodland period.
HI39 Booger Bottom Site
Map: Flowery Branch
Investigation: Excavation, 1953, University of Georgia
Period(s): Early and Middle Woodland
Site Type(s): Mound
Site Nature: Plowzone and subsurface
Midden: Yes
Features: Yes
Preservation State: Unknown
Preservation Prospects: Endangered by Corps of Engineers
National Register Significance: Unknown
National Register Status: Unknown
Location of Documents: University of Georgia
Location Of Collection: University of Georgia

Comments: The Booger Bottom Mound was located along the Chattahoochee River southwest of Gainesville before the Corps of Engineers flooded the area for Lake Lanier. Prior to inundation the site was excavated by Joseph Caldwell (Caldwell et al. 1952). Check stamped sherds dominated the ceramic collection from the mound but simple stamped and fabric marked types were present also. The authors feel that the mound was not accretional, mortuary or for a temple. Caldwell and his colleagues suggested a new phase for this site, Forsyth.

St1 Tugalo Mound Site
Map: Avalon
Investigation: Excavations, 1952, University of Georgia
Period(s): Middle Woodland
Site Type(s): Village and earthen mound
Site Nature: Plowzone and subsurface
Midden: Yes
Features: Yes
Preservation State: Flooded
Preservation Prospects: Unknown
National Register Significance: Unknown
National Register Status: Unknown
Location of Documents: University of Georgia
Location Of Collection: University of Georgia

Comments: This site lies beneath the shallow headwaters of Lake Hartwell on the Tugalo River, a major tributary of the Savannah River. Before inundation, Joseph Caldwell excavated in the mound and tested the adjacent village. Although the site dates mainly to the Mississippian and Historic Indian (Cherokee) period, premound levels of the mound yielded an excellent collection of Late Woodland complicated stamped sherds. This material resembles the Swift Creek/Napier material from the Russell Reservoir to the south which dates around A.D. 600 - 750 (Wood et al. 1986).
Mg46 Little River Mounds

Investigation: Excavations, 1984 and 1987, LAMAR Institute

Period(s): Middle Woodland

Site Type(s): Village and earthen mound

Site Nature: Subsurface

Preservation State: Undisturbed

Midden: Yes

Features: Yes

Preservation Prospects: Safe at present

National Register Significance: State

National Register Status: Unknown

Location of Documents: University of Georgia

Location Of Collection: University of Georgia

Comments: This site was investigated in 1984 and 1987 by Mark Williams and Gary Shapiro working under the auspices of the LAMAR Institute, Inc. (Williams and Shapiro 1990). It is located on an upland ridge top near the Little River, a tributary of the Oconee River. The site is important for several reasons including the fact that it has never been plowed. The work by the LAMAR Institute revealed a major Swift Creek village with two earthen mounds that were reoccupied during the Late Mississippian period. The Woodland occupation yielded predominately early Swift Creek complicated stamped pottery with lesser amounts of linear check stamped and check stamped. Mound B, a small burial mound, provided a radio carbon date of A.D. 110 ± 110 B.C. Mound A is a modest platform mound built during the Mississippian occupation. Excavations in it revealed it was constructed over an earlier stone mound perhaps dating to the Swift Creek occupation. The Little River site may be the earliest Swift Creek site in the northern part of the state.

CURRENT STATUS

The following information concerning the status of Woodland sites in northern Georgia was derived by using the data base from the University of Georgia Site Files. By cross tabulating key variables by physiographic provinces some appreciation of the current status of over 1000 sites with Woodland components can be gained.

Tables 3 - 6 present tabulated descriptive information. From this information we see that the majority of the Woodland sites are artifact scatters recorded on the surface of the ground with no information available to tell us if they have features or midden present. There are 48 earthen mounds or possible earthen mounds on sites with Woodland components, although many of these mounds probably date to the Mississippian period. Only 74 sites have had enough work to suggest they are villages.

Nearly 250 sites have subsurface (below plowzone) deposits which probably stems from the fact that many Woodland sites are situated along major rivers and streams and are subject to the alluviation from bank overflows. This is good news because these sites tend to be less effected by agricultural and forestry impacts than those in the plowzone. One gap in our knowledge of the Woodland sites is that we do not know whether they
have preserved midden or features. Approximately 80 percent of the sites have unknown recorded for these variables.

Table 3. Site Types by Province.

<table>
<thead>
<tr>
<th>CODE</th>
<th>SITE TYPE</th>
<th>RIDGE & VALLEY</th>
<th>BLUE RIDGE</th>
<th>WESTERN PIEDMONT</th>
<th>EASTERN PIEDMONT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Earth mound</td>
<td>9</td>
<td>4</td>
<td>15</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>118</td>
<td>Earth mound?</td>
<td>2</td>
<td></td>
<td>10</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>105</td>
<td>Rock mound</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>102</td>
<td>Village</td>
<td>14</td>
<td>10</td>
<td>36</td>
<td>14</td>
<td>74</td>
</tr>
<tr>
<td>101</td>
<td>Artifact scatter</td>
<td>145</td>
<td>53</td>
<td>413</td>
<td>226</td>
<td>837</td>
</tr>
<tr>
<td>117</td>
<td>Lithic scatter</td>
<td>37</td>
<td>25</td>
<td>73</td>
<td>75</td>
<td>210</td>
</tr>
<tr>
<td>113</td>
<td>Cave</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>107</td>
<td>Rock shelter</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>106</td>
<td>Quarry</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>112</td>
<td>Artifact cache</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>108</td>
<td>Cemetery</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>115</td>
<td>Isolated burial</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>122</td>
<td>Isolated artifact</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>120</td>
<td>Open habitation</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>232</td>
<td>100</td>
<td>566</td>
<td>331</td>
<td>1229</td>
</tr>
</tbody>
</table>
Table 4. Site Nature by Province.

<table>
<thead>
<tr>
<th>CODE</th>
<th>NATURE</th>
<th>RIDGE & VALLEY</th>
<th>BLUE RIDGE</th>
<th>WESTERN PIEDMONT</th>
<th>EASTERN PIEDMONT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plowzone</td>
<td>31</td>
<td>6</td>
<td>46</td>
<td>56</td>
<td>139</td>
</tr>
<tr>
<td>2</td>
<td>Subsurface</td>
<td>1</td>
<td></td>
<td>43</td>
<td>2</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Plowzone</td>
<td>40</td>
<td>22</td>
<td>89</td>
<td>50</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>& Subsurface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Only</td>
<td>124</td>
<td>58</td>
<td>274</td>
<td>156</td>
<td>612</td>
</tr>
<tr>
<td></td>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Known</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Unknown</td>
<td>1</td>
<td>24</td>
<td>10</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>197</td>
<td>86</td>
<td>476</td>
<td>274</td>
<td>1033</td>
</tr>
</tbody>
</table>

Table 5. Presence or Absence of Features by Province.

<table>
<thead>
<tr>
<th>CODE</th>
<th>FEATURES</th>
<th>RIDGE & VALLEY</th>
<th>BLUE RIDGE</th>
<th>WESTERN PIEDMONT</th>
<th>EASTERN PIEDMONT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Present</td>
<td>18</td>
<td>12</td>
<td>40</td>
<td>17</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>Absent</td>
<td>7</td>
<td>10</td>
<td>25</td>
<td>28</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>160</td>
<td>64</td>
<td>358</td>
<td>227</td>
<td>809</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>185</td>
<td>86</td>
<td>423</td>
<td>272</td>
<td>966</td>
</tr>
</tbody>
</table>

Table 6. Presence or Absence of Midden by Province.

<table>
<thead>
<tr>
<th>CODE</th>
<th>MIDDEN</th>
<th>RIDGE & VALLEY</th>
<th>BLUE RIDGE</th>
<th>WESTERN PIEDMONT</th>
<th>EASTERN PIEDMONT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Present</td>
<td>26</td>
<td>12</td>
<td>52</td>
<td>17</td>
<td>107</td>
</tr>
<tr>
<td>2</td>
<td>Absent</td>
<td>15</td>
<td>11</td>
<td>20</td>
<td>32</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>144</td>
<td>63</td>
<td>351</td>
<td>227</td>
<td>785</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>185</td>
<td>86</td>
<td>423</td>
<td>276</td>
<td>970</td>
</tr>
</tbody>
</table>
Tables 7 and 8 present information concerning ownership and disturbance. Most Woodland sites are in private ownership (n=420) followed closely by federal ownership (n=372). It may be assumed that many federally owned sites have been flooded by the Corps of Engineers’ many lakes and reservoirs. However, the National Forests and the Military Reservations around the state hold a substantial number of protected sites. According to the Site Files, the State of Georgia owns only 18 Woodland period sites.

Disturbance on Woodland sites in northern Georgia is estimated in the Site Files data base. Approximately 50 percent (n=520) of these sites lack any information on disturbance; however, a large number (n=316) are estimated to have more than 50 percent disturbance. Only 20 sites are estimated to have little or no disturbance (n=372). It may be assumed that many federally owned sites have been flooded by the Corps of Engineers’ many lakes and reservoirs. However, the National Forests and the Military Reservations around the state hold a substantial number of protected sites. According to the Site Files, the State of Georgia owns only 18 Woodland period sites.

Disturbance on Woodland sites in northern Georgia is estimated in the Site Files data base. Approximately 50 percent (n=520) of these sites lack any information on disturbance; however, a large number (n=316) are estimated to have more than 50 percent disturbance. Only 20 sites are estimated to have little or no disturbance.

Table 7. Ownership by Province.

<table>
<thead>
<tr>
<th>CODE</th>
<th>OWNER SHIP</th>
<th>RIDGE & VALLEY</th>
<th>BLUE RIDGE</th>
<th>WESTERN PIEDMONT</th>
<th>EASTERN PIEDMONT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Private</td>
<td>109</td>
<td>48</td>
<td>170</td>
<td>93</td>
<td>420</td>
</tr>
<tr>
<td>2</td>
<td>City</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>County</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>State</td>
<td>5</td>
<td>0</td>
<td>11</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>Federal</td>
<td>25</td>
<td>25</td>
<td>190</td>
<td>132</td>
<td>372</td>
</tr>
<tr>
<td>6</td>
<td>Unknown</td>
<td>43</td>
<td>13</td>
<td>85</td>
<td>44</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>184</td>
<td>86</td>
<td>471</td>
<td>272</td>
<td>1013</td>
</tr>
</tbody>
</table>
Table 8. Disturbance by Province.

<table>
<thead>
<tr>
<th>CODE</th>
<th>DISTURBANCE</th>
<th>RIDGE & VALLEY</th>
<th>BLUE RIDGE</th>
<th>WESTERN PIEDMONT</th>
<th>EASTERN PIEDMONT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Little or none</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td><50%</td>
<td>36</td>
<td>6</td>
<td>97</td>
<td>41</td>
<td>180</td>
</tr>
<tr>
<td>3</td>
<td>>50%</td>
<td>92</td>
<td>26</td>
<td>94</td>
<td>104</td>
<td>316</td>
</tr>
<tr>
<td>4</td>
<td>Unknown</td>
<td>65</td>
<td>52</td>
<td>277</td>
<td>126</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>197</td>
<td>86</td>
<td>477</td>
<td>276</td>
<td>1036</td>
</tr>
</tbody>
</table>

Table 9 shows the National Register status of sites. Only 377 sites have any information on eligibility to the National Register of Historic Places. It has been only in the last 20 years that archaeologists working in Georgia have addressed National Register eligibility on site forms. The Site Files records 15 sites with Woodland components as listed on the National Register. These are probably all within the Etowah River Valley Historic District which encompasses a large area from Cartersville to Rome. There are 88 other sites with Woodland components recorded as recommended eligible for listing on the National Register.

Table 9. National Register Status by Province.

<table>
<thead>
<tr>
<th>CODE</th>
<th>REGISTER STATUS</th>
<th>RIDGE & VALLEY</th>
<th>BLUE RIDGE</th>
<th>WESTERN PIEDMONT</th>
<th>EASTERN PIEDMONT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recommend. ineligible</td>
<td>29</td>
<td>15</td>
<td>68</td>
<td>26</td>
<td>138</td>
</tr>
<tr>
<td>2</td>
<td>Recommend. eligible</td>
<td>17</td>
<td>9</td>
<td>47</td>
<td>15</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>Nominated</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Registered</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Eligible</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>Unknown</td>
<td>11</td>
<td>7</td>
<td>74</td>
<td>40</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>72</td>
<td>31</td>
<td>193</td>
<td>81</td>
<td>377</td>
</tr>
</tbody>
</table>
The preservation prospects of sites within each province are shown in Table 10. Only 28 sites are listed as being safe at the present time. The site files lists 472 sites as lacking any information concerning the prospects for preservation. The remaining 408 sites are listed as being endangered by activities or municipal, state and federal agencies. Cultivation and the Corps of Engineers are reported as endangering the majority of the known Woodland sites in northern Georgia. Most of those threatened by the Corps have been flooded by lakes and reservoirs; however, some of these were excavated or tested prior to inundation.

The above tables present generalized information about the status of Woodland sites in northern Georgia. The information presented is acknowledged to be subject to errors as we have stated earlier in this operating plan. It does point out one important fact which is undeniable—we know little about the current condition of most sites. The most frequently used response in the Site Files database is the category of unknown. This situation results from coding the early site forms or site data into a new computerized database. In many instances the earlier data simply did not have information concerning the presence or absence of midden and features or other key variables. In the final chapter on management recommendations we address this deficiency and pose suggestions to remedy the situation.
Table 10. Preservation Prospects by Province.

<table>
<thead>
<tr>
<th>CODE</th>
<th>PRESERVATION PROSPECT</th>
<th>RIDGE & VALLEY</th>
<th>BLUE RIDGE</th>
<th>WESTERN PIEDMONT</th>
<th>EASTERN PIEDMONT</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Safe at present</td>
<td>4</td>
<td>11</td>
<td>6</td>
<td>7</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>* Erosion</td>
<td>2</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>* Flooding</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>* Cultivation</td>
<td>48</td>
<td>5</td>
<td>16</td>
<td>13</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>* Looting</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>* Private Recreat.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>* Construction</td>
<td>13</td>
<td></td>
<td>24</td>
<td>6</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>* City Gov't</td>
<td>2</td>
<td></td>
<td>11</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>* County Gov't</td>
<td>1</td>
<td></td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>* GA DOT</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>22</td>
</tr>
<tr>
<td>18</td>
<td>* GA DNR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>* CORPS of Eng.</td>
<td></td>
<td>3</td>
<td>24</td>
<td>86</td>
<td>113</td>
</tr>
<tr>
<td>10</td>
<td>* Soil Conserv. Serv.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>* Forest Service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>* Military</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>* Public Housing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>* Elect. Utilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>78</td>
<td>51</td>
<td>228</td>
<td>115</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>166</td>
<td>85</td>
<td>392</td>
<td>265</td>
<td>908</td>
</tr>
</tbody>
</table>

*Endangered by...
V
RESEARCH RECOMMENDATIONS

INTRODUCTION

In reviewing the synopses of the various Woodland phases of Georgia north of the Fall Line, the lack of data in certain areas and the need or direction for future research becomes obvious. Our knowledge of certain phases has grown rapidly since the advent of cultural resource management, and this has served as a focus for intensive studies. Other phases still exist in textbooks or syntheses as they did forty or fifty years ago. Enough knowledge exists on some phases to begin examining more particular questions of cultural process, demography, and ecological relationships, while knowledge of other phases is still in the infancy stage of collecting and describing.

KELLOGG

Kellogg has benefitted greatly from the advent of cultural resource management studies. A number of prominent Kellogg components have been the focus of several "salvage" projects (Bowen 1978, 1981, and 1982; Blanton 1986; Crook 1984; Ledbetter, et al. 1987; Smith 1981; Wood 1981; and Wood and Ledbetter 1988). A synthesis of the Kellogg phase also has been the focus of an intensive research effort by Bowen (1989). This new data and the analysis of older data gathered by Wauchope (1966) and Caldwell (1957), have provided extensive data and insight into regional and intra-site settlement patterning. The analysis of faunal and floral samples gathered from the Garfield, Kellogg, Ck130, and Rush sites has provided a detailed picture of general Kellogg diet and subsistence patterns. Finally, the accumulation of radio-carbon dates over the past twenty-five years forms a solid foundation for Kellogg chronology.

The large volume of data available for Kellogg has prompted questions on certain aspects of the phase. Although much is now known about the Kellogg diet, the inter-site correlations of particular site types with particular phases of the Kellogg economy is still required. Such questions can only be answered through the gathering of additional floral and faunal samples from a variety of Kellogg site types in various environmental settings. The search for evidence of the extensive use of cultigens should be a particular focus of future Kellogg research on diet. While the extensive use of plant domesticates has been documented for Late Archaic and other Early Woodland Phases in the mid-west and southeast, the continuous use of plant domesticates in a Kellogg context has yet to be demonstrated.
We now possess a better understanding on when Kellogg began and when it ended although the question still remains as to where it came from and what happened to it. Whether Kellogg developed from a sedentary, extant Archaic population or from migrations, exchanges of cultural ideas, or absorption, can only be answered through the excavations of stratified deposits like those at the Cagle site, Ck123 (Crook 1984). The same is true in determining if Kellogg evolved into Cartersville, was displaced by it, or was absorbed into it.

Another area of research that current data might address is the delineation of cultural boundaries. Excavations and collections from numerous sites from Lake Allatoona westward to Rome demonstrate the gradual increase of Longbranch to Dunlap ceramics as one moves from east to west (Wood and Ledbetter 1988; and Bowen 1989). Research could focus on defining a particular topographic boundary where Kellogg components are distinguished from Longbranch. Perhaps a closer examination of material culture and settlement patterns would help demonstrate such a cultural boundary.

CARTERSVILLE

A determination of the immediate future research objectives for the Cartersville phase are much more straightforward and, therefore, easier to address. While abundant collections exist for Cartersville Period sites (Caldwell 1957), they have yet to be fully analyzed or adequately reported. Also, it would seem Cartersville sites have been fairly adept at avoiding federally-aided, cultural resource management projects.

The first objective for a study of the Cartersville phase should be a close look at the existing data with emphasis placed on the determination of regional inter- and intra-site settlement strategies and relative chronological associations. Along with this should be a continuous effort to establish a firm absolute chronological range. Such information may not only help to clarify the temporal relationship with Kellogg, but also the upper time range in which it presently appears to merge erratically into the Late Woodland complicated stamped tradition.

Domestic plant species have been documented in Cartersville phase contexts and they appear to be a contributing part of the aboriginal diet. Efforts should be made to further document the use of (or role of) plant domesticates in the Cartersville subsistence economy, their development within that economy, and how their use affected other aspects of the economy and the culture. Such effects should not only be visible in the tangible floral remains themselves, but also in intra-site settlement and material culture patterns.
SWIFT CREEK

Many of the research issues discussed for Kellogg and Cartersville phases are pertinent for the Swift Creek phase as well. Chronology, settlement, diet, and regional expressions are all issues that can be addressed only by excavating well preserved sites.

Re-analysis of existing collections is also a possible approach to gleaning more information on the Late Woodland Period societies in northern Georgia.

There are some research questions, however, that are specific to the Late Woodland phase. For instance, the chronological and social placement of simple stamped pottery from the Ocmulgee River to the Savannah River of the Georgia Piedmont. Archeologists, who have recently addressed the problem have suggested that these materials date to the Late Woodland and even Early Mississippian Periods (Anderson and Schudlenrein 1985; Anderson and Joseph 1988; Elliott and Wynn 1991). In the Russell Reservoir of the Savannah River Valley, David Anderson believes that Cartersville simple stamped and plain pottery last well into the Late Woodland. He bases this belief on radio-carbon dates from features containing these sherds at Ruckers Bottom (Eb91) and Rufus Bullard (Eb76).

Apparently, people producing simple stamped pottery co-existed with those making the more traditionally recognized Swift Creek complicated stamped wares. However, at the Simpson Field Site, across the Savannah River in South Carolina (38An8), no simple stamped pottery was found with the pure Swift Creek assemblage dated to between A.D. 600 - 750 (Wood et al. 1986).

In the Middle Georgia Piedmont (Ocmulgee and Oconee River Valleys primarily), simple stamped sites are found on hilltops and ridges which are often far removed from the major streams or rivers (Elliott and Wynn 1991; Rogers et al. 1991). Although the excavations on these sites have been limited, there is circumstantial evidence that places them in Late Woodland or even Early Mississippian rather than earlier Woodland contexts. Clearly, what is needed in both cases is more excavation and radio-carbon dates. Until we have more sites extensively studied, the question of Late Woodland simple stamped ceramics will persist.

Another Late Woodland Period research issue concerns the role of domesticated plants in the aboriginal diet. Although squash, gourd, sunflower, and corn are present in the Woodland gardener’s inventory of plants, they may not have contributed significantly to the diet until the Mississippian Period. Presumably, harvesting wild plants was the mainstay method of providing vegetables to the diet as it had been for thousands of years. No Woodland site has produced enough evidence of domesticates to convincingly suggest that gardening played a significant role in the subsistence economy. Perhaps we have not found the right site where excellent preservation of plant materials will change our present
knowledge of the situation. One specific recommendation we have is to make more use of pollen analysis. Palynology offers great potential for retrieving important information concerning the role of plant domestication in the diet of Woodland people.
VI
MANAGEMENT CONSIDERATIONS

This final chapter offers recommendations for improving the present situation for Woodland Period research in northern Georgia. Although the focus is on a specific time period in a specific region, much of this discussion pertains to all of Georgia’s archaeological record.

Listed below are some of the problems we believe are hindering Woodland Period research in Georgia

Incomplete and incorrect data in the Site Files at the University of Georgia. Our work relied heavily upon the computerized data base provided by the Site Files which gave us a chance to recognize its limitations. One problem is that coding of site data is back-logged to such an extent that sites from many recent surveys, testing and excavations have not been entered. Slowly but surely this problem is being remedied through continued progress by the Site Files staff. Additionally, some contractors are providing their data to the Site Files already entered into Paradox (or compatible programs), the database used for the files. This enables the staff to quickly bring these sites on line. One of the most frustrating parts of putting this research design paper together was not being able to use the vast site distributional and component data from the Wallace Reservoir (now Lake Oconee) survey and excavations in Green and Putnam Counties.

Many of the sites in the database are in need of updates. This is especially true of sites recently surveyed or excavated as part of a large data recovery effort. Another problem is that many key sites excavated or tested decades ago have not been revisited since. An important question is whether these sites still exist and what is their potential for future research? In order to answer this question and update the site data, a field visit to document the present condition of the site and its environs will be necessary.

We found fewer errors concerning Woodland Period data entry than did Anderson and his colleagues when they prepared the PaleoIndian Period Research Design Paper (Anderson et al. 1991). Nevertheless, many errors do exist in the files and this has the potential for presenting a distorted view of prehistory. The Site Files must be verified, site by site, to insure that researchers can rely upon the information in the files. Until this takes place, there will probably be a reluctance by archeologists to use the files for more than cursory examinations of previously recorded sites in their study area.
A final word is offered concerning the Site Files at the University of Georgia. The University is commended for providing the services that are available. Since Mark Williams was given the task of maintaining the files and guiding their computerization, much progress has been made. Williams and an assistant are low paid and overworked but somehow manage to keep the operation moving forward despite a shoestring budget and little support from the outside. The authors of this research design paper acknowledge the progress that has been made. We remember when the Site Files consisted of three ring binders stuffed with 5 x 7" cards containing little useful information.

Site Protection of non-Federally owned sites. Many Woodland Period sites protected by law are owned by municipalities or corporations. Whereas most Federal and State agencies owning protected sites have one or more archeologists available to help insure the site's continued existence, a community that has agreed to protect a significant site cannot be expected to have the expertise to maintain the site. Likewise, corporations owning large tracts of land with protected sites (especially public utilities and paper companies) have difficulty justifying a full-time professional to manage their cultural resources. An exception is Georgia Power Company which recently hired a professional archaeologist in their Land Department.

We recommend that municipalities and corporations mandated by law to protect significant sites should be required to acquire the services of a professional archeologist (on staff or consultant) to periodically monitor the status and conditions of these sites, reporting changes to the Georgia Historic Preservation Section and the Site Files.

Destruction of sites by private development. Northern Georgia has experienced rapid growth over the past few decades. The fact that we no longer have a rural economy has dramatically effected the condition of Woodland sites in this region. Urbanization brings strip development, water and sewer improvements, roads, and a general increase in the magnitude of a built-up environment. This development has destroyed countless sites because very few private developments consider archaeological sites in the planning process. In most instances, the developers and backers have no knowledge they are destroying important information about the past.

The Leake site (Br2) near Cartersville (see Figure III-1) is an example of a site endangered by the continued spread of industrial development. Fortunately, efforts by Jim Langford (Coosawattee Foundation) and David Hally (University of Georgia) have held off destruction of the mound, at least temporarily. However, the property has major road frontage and is ideally suited for development.
The Leake site is not the only example of a significant site threatened by private development. Certain key sites, such as Leake, should be nominated to the list of new public lands purchased by the state.

Destruction of sites by looting. Woodland Period sites are also threatened by looters who indiscriminately dig into midden and features. They are after a narrow range of artifacts that have substantial monetary value to collectors and black market dealers. The Garfield (Br57) and Boston Creek (Br141) sites on the Etowah and its tributaries and the Anthony Shoals site (Ws51) on the Broad River have received extensive damage by looters. Boston Creek and Anthony Shoals are owned by the Corps of Engineers and even with their infinite wisdom and resources, they cannot catch everyone, nor organize a successful prosecution. In addition to continued diligence on the part of State and Federal agencies, a program of public information directed at educating people about the importance of protecting archaeological sites and leaving the digging to professionals is needed.

Collections Management. If you want to restudy collections from Northern Georgia Woodland sites, you might have to visit as many as eight institutions and agencies in three states housing archaeological materials. That is, if you’re lucky enough to known where the collections are. The Site Files in many instances contain no information on the whereabouts of either documents or artifacts from sites. This situation points to the need for a centralized curation facility to house Georgia’s archaeological record and a funded support staff to oversee this task.
REFERENCES CITED

Anderson, David G. and J. W. Joseph

Anderson, David G., R. Jerald Ledbetter, and Lisa D. O’Steen

Anderson, David G. and Joseph Schudlenrein

Blanton, Dennis B.

Bowen, William R.
1978 A preliminary report on Georgia Department of Transportation archeological excavations in Cherokee County, Georgia. The Profile No. 21:5-6.

1982 Archaeological Investigations at 9Ck(DOT)7 Cherokee County, Georgia. Georgia Department of Transportation, Occasional Papers in Cultural Resource Management #1.

Broyles, Betty
Butts, Charles and Benjamin Gildersleeve

Caldwell, Joseph R.

1957 *Survey and Excavations in the Allatoona Reservoir, Northern Georgia.* Typed Manuscript on File, University of Georgia, Department of Anthropology, Athens.

Caldwell, Joseph R., C.E. Thompson and S.K. Caldwell
1952 *The Booger Bottom Mound: A Forsyth Period Site in Hall County, Georgia.* *American Antiquity* 17:319-328.

Campbell, Marius R.
1925a The Valley Province. In *Physical Geography of Georgia*, edited by S. W. McCallie, pp. 133-147, Atlanta.

Chase, David W. and A.R. Kelly
1958 *The Halloca Creek Site.* Manuscript submitted to the National Park Service.

Crook, Morgan R., Jr.

1985 *Archaeological Investigations at the Weaver Site, Gilmer County, Georgia.* Prepared for the Georgia Department of Transportation. Archeological Research Services, West Georgia College, Carrollton, Georgia.

1986 *A Strategy for Cultural Resource Planning in Georgia.* State of Georgia, Department of Natural Resources, Parks and Historic Sites Division, Historic Preservation Section, Atlanta.
Department of Natural Resources
1989 **A Vision for the Future: The Georgia Historic Preservation Plan.** Historic Preservation Section Division of Parks, Recreation and Historic Sites, Georgia Department of Natural Resources, Atlanta.

Dickens, Roy S.

Elliot, Daniel T. and Jack T. Wynn

Fairbanks, Charles H.

1954 *1953 Excavations at Site 9H164, Buford Reservoir, Georgia.* Archeological Services Branch, National Park Service, Atlanta.

Fenneman, Nevin M.

Fish, Suzanne K. and Richard W. Jefferies

Garrow, Patrick

Gresham, Thomas H., W. Dean Wood, Chad O. Braley, and Kay G. Wood

Harris, Corra
1950 *A Sketch of the Pine Log Indian Cave.* *Early Georgia* 1(1):41-42.

Hodler, Thomas W. and Howard A. Schretter
Jefferies, Richard W.

Jefferies, Richard W. and Paul R. Fish
1978 Investigation of Two Stone Mound Localities, Monroe County, Georgia. *Laboratory of Archaeology Series* Number 17. Department of Anthropology, University of Georgia, Athens.

Keith, Arthur

Kelly, A.R.

Kelly, A. R. and Betty A. Smith
1975 *The Swift Creek Site (9Bi3), Macon, Georgia*. Unpublished manuscript on file. Department of Anthropology, University of Georgia, Athens.

Kohler, T. A., T. P. DesJean, C. Feiss, and D.E. Thompson

LaForge, Laurence

Ledbetter, R. Jerald
1992 *Archaeological Investigations at the Pumpkin Pile Site (9Po27), Polk County, Georgia*. Prepared for USDA Soil Conservation Service. Southeastern Archeological Services, Athens, Georgia.

Ledbetter, R. Jerald, W. Dean Wood, Karen G. Wood, Robbie F. Ethridge, and Chad O. Braley
Milanich, Jerald T.

O’Steen, Lisa D.

Padgett, Thomas J.

Phelps, David S. and Rebekah Burgess

Rogers, Anne
1978 *Preliminary Report on 9Pm201, Wallace Reservoir Project.* Department of Anthropology, University of Georgia, Athens.

Rogers, Ronnie H., Karen G. Wood and W. Dean Wood

Rudolph, James L.

Rudolph, Teresa P.

Smith, Charlotte A and Karen G. Wood

Stuart, George E. and Gene S. Stuart
1969 *Discovering Man's Past in the Americas.* The National Geographic Society, Washington, D.C.

Walker, John
Waring, Antonio J.

Wauchope, Robert

Williams, Mark and Gary Shapiro
1990 *Archaeological Excavations at Little River (9Mg46), 1984 and 1987.* LAMAR Institute, Watkinsville.

Wood, W. Dean
1979 *An Analysis of Two Early Woodland Households From the Cane Island Site, 9Pm209.* Unpublished Masters Thesis, Department of Anthropology, University of Georgia, Athens.

1981 *Two Woodland Households from the Cane Island Site, 9Pm209.* Unpublished Manuscript in possession of the author.

Wood, W. Dean, Dan T. Elliott, Teresa P. Rudolph, and Dennis B. Blanton

Wood, W. Dean and R. Jerald Ledbetter

Wood, W. Dean and Charlotte A. Smith
APPENDIX
Radio Carbon Dates from Selected Woodland Sites in Georgia
<table>
<thead>
<tr>
<th>LAB NUMBER</th>
<th>SITE</th>
<th>PERIOD OR PHASE</th>
<th>UNCORRECTED DATE</th>
<th>REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGA-5542</td>
<td>9Ck102, Kellogg</td>
<td>Kellogg</td>
<td>AD 507 ±110</td>
<td>Bowen 1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>295 ± 200 BC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>370 ± 100 BC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>455 ± 85 BC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200 ± 180 BC</td>
<td></td>
</tr>
<tr>
<td>B-20177</td>
<td>9FL164, Rush</td>
<td>Kellogg</td>
<td>510 ± 90 BC</td>
<td>Wood & Ledbetter 1990</td>
</tr>
<tr>
<td>B-20178</td>
<td></td>
<td></td>
<td>480 ± 80 BC</td>
<td></td>
</tr>
<tr>
<td>B-20179</td>
<td></td>
<td></td>
<td>1000 ± 90 BC</td>
<td></td>
</tr>
<tr>
<td>B-20181</td>
<td></td>
<td></td>
<td>480 ± 50 BC</td>
<td></td>
</tr>
<tr>
<td>B-20535</td>
<td></td>
<td></td>
<td>480 ± 80 BC</td>
<td></td>
</tr>
<tr>
<td>B-20536</td>
<td></td>
<td></td>
<td>660 ± 100 BC</td>
<td></td>
</tr>
<tr>
<td>B-228934/ETH 3395</td>
<td></td>
<td>Cartersville (Maize cupule)</td>
<td>AD 660 ± 100</td>
<td></td>
</tr>
<tr>
<td>UGA-2389</td>
<td>9CK 130</td>
<td>Kellogg</td>
<td>245 ± 120 BC</td>
<td>Bowen 1982</td>
</tr>
<tr>
<td>UGA-2391</td>
<td></td>
<td></td>
<td>470 ± 150 BC</td>
<td></td>
</tr>
<tr>
<td>UGA-2392</td>
<td></td>
<td></td>
<td>565 ± 75 BC</td>
<td></td>
</tr>
<tr>
<td>UGA-2393</td>
<td></td>
<td>Swift Creek</td>
<td>AD 700 ± 75</td>
<td></td>
</tr>
<tr>
<td>UGA-245</td>
<td>9Br57, Garfield</td>
<td>Kellogg</td>
<td>405 ± 60 BC</td>
<td>Milanich 1973</td>
</tr>
<tr>
<td>UGA-245</td>
<td></td>
<td></td>
<td>AD 100 ± 70</td>
<td></td>
</tr>
<tr>
<td>B-4352</td>
<td>9Ck123, Cagle</td>
<td>Kellogg</td>
<td>600 ± 60 BC</td>
<td>Crook 1984</td>
</tr>
<tr>
<td>LAB NUMBER</td>
<td>SITE</td>
<td>PERIOD OR PHASE</td>
<td>UNCORRECTED DATE</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>SI-6813</td>
<td>9PM209, Cane Island</td>
<td>Cartersville</td>
<td>AD 245 ± 95</td>
<td>Wood 1985</td>
</tr>
<tr>
<td>SI-6814</td>
<td>9PM209, Cane Island</td>
<td></td>
<td>AD 115 ± 85</td>
<td></td>
</tr>
<tr>
<td>SI-6814</td>
<td>9PM209, Cane Island</td>
<td></td>
<td>AD 80 ± 60</td>
<td></td>
</tr>
<tr>
<td>B-13540</td>
<td>9Mg46, Little River, Md. C</td>
<td>Swift Creek</td>
<td>100 ± 110 BC</td>
<td>Williams & Shapiro</td>
</tr>
<tr>
<td>B-13541</td>
<td>9Mg46, Little River, Md. B</td>
<td></td>
<td>AD 110 ± 130</td>
<td>1990</td>
</tr>
<tr>
<td>UGA-ML-8</td>
<td>9DD26, Tunacunnhee, Md C</td>
<td>Middle Woodland</td>
<td>AD 150 ± 95</td>
<td>Jefferies 1976</td>
</tr>
<tr>
<td>UGA-ML-9</td>
<td>Tunacunnhee Village</td>
<td></td>
<td>AD 440 ± 395</td>
<td></td>
</tr>
<tr>
<td>UGA-ML-10</td>
<td>Tunacunnhee Village</td>
<td></td>
<td>AD 280 ± 125</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>9BR2, Leake Mound</td>
<td>Middle Woodland</td>
<td>AD 140 ± 60</td>
<td>Rudolph 1990</td>
</tr>
<tr>
<td>NA</td>
<td>9BR2, Leake Mound</td>
<td></td>
<td>AD 290 ± 80</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>9BR1, Leake Village</td>
<td>Cartersville</td>
<td>AD 440 ± 60</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>9BR1, Leake Village</td>
<td></td>
<td>AD 90 ± 48</td>
<td></td>
</tr>
<tr>
<td>UGA-225</td>
<td>9GE10, Cold Springs Md. B</td>
<td>Swift Creek</td>
<td>AD 400 ± 65</td>
<td>Fish & Jefferies 1983</td>
</tr>
<tr>
<td>UGA-2364</td>
<td>9Ge10, Cold Springs Md. A</td>
<td></td>
<td>AD 445 ± 55</td>
<td></td>
</tr>
<tr>
<td>UGA-6259</td>
<td>9MO487</td>
<td>Swift Creek</td>
<td>AD 556 ± 94</td>
<td>Rogers et al. 1991</td>
</tr>
<tr>
<td>UGA-6260</td>
<td></td>
<td></td>
<td>AD 546 ± 90</td>
<td></td>
</tr>
<tr>
<td>UGA-6261</td>
<td></td>
<td></td>
<td>AD 341 ± 48</td>
<td></td>
</tr>
<tr>
<td>UGA-6262</td>
<td></td>
<td></td>
<td>AD 435 ± 87</td>
<td></td>
</tr>
<tr>
<td>UGA-6263</td>
<td></td>
<td></td>
<td>AD 655 ± 111</td>
<td></td>
</tr>
<tr>
<td>GX-2825</td>
<td>9DO2, Aneewakee Creek</td>
<td>Swift Creek/Napier</td>
<td>AD 605 ± 85</td>
<td>Dickens 1975</td>
</tr>
<tr>
<td>GX-2826</td>
<td>9DO2, Aneewakee Creek</td>
<td></td>
<td>AD 755 ± 100</td>
<td></td>
</tr>
<tr>
<td>B-28617</td>
<td>9MO389</td>
<td>Vinings</td>
<td>AD 280 ± 110</td>
<td>Smith & Wood 1989</td>
</tr>
<tr>
<td>B-28633/ETH4750</td>
<td></td>
<td></td>
<td>AD 5 ± 55</td>
<td></td>
</tr>
<tr>
<td>B-28633/ETH4751</td>
<td></td>
<td></td>
<td>AD 930 ± 60</td>
<td></td>
</tr>
<tr>
<td>LAB NUMBER</td>
<td>SITE</td>
<td>PERIOD OR PHASE</td>
<td>UNCORRECTED DATE</td>
<td>REFERENCE</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>UGA-6259</td>
<td>9MO487</td>
<td>Swift Creek</td>
<td>AD 556 ± 94</td>
<td>Rogers et al. 1991</td>
</tr>
<tr>
<td>UGA-6260</td>
<td></td>
<td></td>
<td>AD 546 ± 90</td>
<td></td>
</tr>
<tr>
<td>UGA-6261</td>
<td></td>
<td></td>
<td>AD 341 ± 48</td>
<td></td>
</tr>
<tr>
<td>UGA-6262</td>
<td></td>
<td></td>
<td>AD 435 ± 87</td>
<td></td>
</tr>
<tr>
<td>UGA-6263</td>
<td></td>
<td></td>
<td>AD 655 ± 111</td>
<td></td>
</tr>
<tr>
<td>GX-2825</td>
<td>9DO2, Aneewakee Creek</td>
<td>Swift Creek/Napier</td>
<td>AD 605 ± 85</td>
<td>Dickens 1975</td>
</tr>
<tr>
<td>GX-2826</td>
<td></td>
<td></td>
<td>AD 755 ± 100</td>
<td></td>
</tr>
<tr>
<td>B-28617</td>
<td>9MO389</td>
<td>Vinings</td>
<td>AD 280 ± 110</td>
<td>Smith & Wood 1989</td>
</tr>
<tr>
<td>B-28633/ETH4750</td>
<td></td>
<td></td>
<td>AD 5 ± 55</td>
<td></td>
</tr>
<tr>
<td>B-28633/ETH4751</td>
<td></td>
<td></td>
<td>AD 930 ± 60</td>
<td></td>
</tr>
<tr>
<td>DIC-2294</td>
<td>9EB91, Ruckers Bottom</td>
<td>Late Woodland</td>
<td>AD 340 ± 85</td>
<td>Anderson &</td>
</tr>
<tr>
<td>DIC-2297</td>
<td></td>
<td></td>
<td>AD 900 ± 85</td>
<td>Schuldinrein 1985</td>
</tr>
<tr>
<td>DIC-2298</td>
<td></td>
<td></td>
<td>AD 370 ± 50</td>
<td></td>
</tr>
<tr>
<td>DIC-2299</td>
<td></td>
<td></td>
<td>AD 810 ± 110</td>
<td></td>
</tr>
<tr>
<td>UGA-3613</td>
<td>9EB76, Rufus Bullard</td>
<td>Late Woodland</td>
<td>AD 950 ± 55</td>
<td>Anderson &</td>
</tr>
<tr>
<td>UGA-3616</td>
<td></td>
<td></td>
<td>AD 1090 ± 55</td>
<td>Schuldinrein 1985</td>
</tr>
</tbody>
</table>